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C O G N I T I V E  N E U R O S C I E N C E

Neuroanatomical, transcriptomic, and molecular 
correlates of math ability and their prognostic value for 
predicting learning outcomes
Jin Liu1*†, Kaustubh Supekar1,2†, Dawlat El-Said1, Carlo de los Angeles1,  
Yuan Zhang1, Hyesang Chang1, Vinod Menon1,2,3*

Foundational mathematical abilities, acquired in early childhood, are essential for success in our technology-driven 
society. Yet, the neurobiological mechanisms underlying individual differences in children’s mathematical abilities 
and learning outcomes remain largely unexplored. Leveraging one of the largest multicohort datasets from children 
at a pivotal stage of knowledge acquisition, we first establish a replicable mathematical ability–related imaging 
phenotype (MAIP). We then show that brain gene expression profiles enriched for candidate math ability–related 
genes, neuronal signaling, synaptic transmission, and voltage-gated potassium channel activity contributed to the 
MAIP. Furthermore, the similarity between MAIP gene expression signatures and brain structure, acquired before 
intervention, predicted learning outcomes in two independent math tutoring cohorts. These findings advance our 
knowledge of the interplay between neuroanatomical, transcriptomic, and molecular mechanisms underlying 
mathematical ability and reveal predictive biomarkers of learning. Our findings have implications for the develop-
ment of personalized education and interventions.

INTRODUCTION
In our increasingly technology-driven world, mathematical thinking 
underpins virtually every aspect of our daily lives. Foundational 
mathematical abilities, acquired in early childhood, are prerequisites 
for individual academic and professional development and success 
(1). Despite their ubiquity and importance, the neurobiological 
mechanisms that drive some children to have better (or poorer) 
mathematical abilities and learning outcomes than others have rarely 
been investigated. A comprehensive understanding of the macroscale 
structure of the brain and the microscale transcriptomic/molecular 
factors and their interplay, particularly in relation to mathematical 
abilities and learning, is currently lacking. This knowledge is critical 
for the comprehensive multimodal characterization of the neuro-
biological mechanisms driving individual differences in mathemati-
cal abilities and learning outcomes.

To address this knowledge gap, our study aims to integrate neuro-
imaging and transcriptomic data to probe the neurobiological mech-
anisms underlying mathematical abilities and learning in children. 
Neuroimaging offers insights into the structural and functional 
brain patterns associated with mathematical cognition, while genetic 
analysis reveals the underlying transcriptomic and molecular fac-
tors. By combining these methodologies and applying them to mul-
tiple datasets (Fig. 1 and figs. S1 and S2), we sought to elucidate the 
interrelations between brain structure, cognitive function, genetics, 
and physiology and enhance our understanding of individual differ-
ences in mathematical cognition and learning. This integrated ap-
proach is not only crucial for advancing scientific knowledge but 
also has substantial implications for precision education.

We focused our investigation on three targeted questions in 
school-age children: (i) What are the replicable brain structural 
correlates of individual differences in mathematical abilities? (ii) 
Which transcriptomic molecular factors contribute to this brain-
behavior association? (iii) Can transcriptomic molecular factors 
predict learning outcomes in response to math interventions? By 
addressing these questions, we aim to lay the groundwork for a 
comprehensive multilevel characterization of brain and transcrip-
tomic and molecular correlates of children’s mathematical abilities 
and learning during a pivotal stage of knowledge acquisition.

The first aim of our study was to identify brain structural cor-
relates of individual differences in children’s mathematical abilities. 
A substantial body of research has shown that mathematical cogni-
tion relies on multiple distributed brain systems, including the bi-
lateral posterior parietal cortex (PPC), ventral temporal-occipital 
cortex (VTOC), and prefrontal cortex (PFC). Collectively, these 
brain regions support quantity representation, symbolic number 
form, as well as higher-order functions such as working memory 
and cognitive control required for efficient problem-solving (2–4). 
While prior studies have examined the neuroanatomical sources of 
differences in children’s mathematical abilities, no consensus has 
yet emerged (table S1) (5–13). Crucially, the reliance on categorical 
analyses comparing atypically and typically developing children in 
many prior studies, along with the use of arbitrary cutoffs on ability 
measures, has made it difficult to draw definitive conclusions re-
garding the relationship between brain structure and individual 
differences in children’s mathematical abilities. Findings from a few 
studies with dimensional approaches that investigated the relation 
between brain structure and individual differences in mathemati-
cal abilities in children have also been largely inconsistent (14–18). 
Furthermore, to our knowledge, the replicability of these findings 
across multiple cohorts remains unknown.

The lack of consistent findings regarding brain structural cor-
relates of individual differences in children’s mathematical abilities 
likely stems from small sample sizes in previous research (see table S1 
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Fig. 1. Study overview. We investigated the neurobiological mechanisms that drive individual differences in mathematical abilities and learning, using four datasets of 
children (ages 7 to 13 years) and a three-part (A) to (C) analysis. (A) The first part of the study examined the structural brain correlates of individual differences in mathe-
matical abilities, using discovery analysis in the Stanford cohort and replication/validation analysis in the Nathan Kline Institute-Rockland Sample (NKI-RS) cohort. We 
evaluated associations between brain structure and mathematical abilities in the Stanford discovery cohort by conducting a canonical correlation analysis. This analysis 
included brain measures consisting of whole-brain regional gray matter volumes and behavioral measures consisting of standardized scores from the Numerical Opera-
tions and Math Reasoning subtests of the Wechsler Individual Achievement Test Second Edition (WIAT-II). We then examined generalizability of the multivariate brain-
behavior relationship observed in the Stanford cohort by using this relationship to predict mathematical abilities in the NKI-RS cohort. (B) The second part examined gene 
expression profiles associated with brain structures underlying individual differences in mathematical abilities by using a partial least squares regression analysis, using 
human brain-wide gene expression data from the Allen Institute for Brain Science. Enrichment analyses were performed to examine the functional relevance of the iden-
tified genes. (C) The third part examined whether the association between mathematical ability–related gene expression profiles and a child’s structural brain organiza-
tion shapes their mathematical learning across two independent math intervention datasets with distinct tutoring protocols. A transcriptome similarity index (TSI) was 
calculated as the correlation between the individual structure and mathematical ability–related gene expression profiles. We related these indices to learning outcomes 
following interventions, using a general linear model with the TSIs as the predictor variables and learning outcomes as the response variable in each of the two cohorts.
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for a summary). Specifically, the small sample sizes (n < 25 in each 
group) in many of these studies have hindered the ability to detect 
robust associations with gray matter volume and morphology. More-
over, most investigations have relied on univariate brain-behavior 
associations, linking a single brain region to a mathematical ability 
measure. Such a regional approach is inconsistent with the systems 
neuroscience perspective that multiple distributed brain areas con-
tribute to complex cognitive processes involved in mathematical 
reasoning (4, 19). In addition, univariate approaches, compared to 
multivariate methods, have been shown to be less reliable in predict-
ing brain-behavior relationships (20).

We used a multivariate analysis strategy, leveraging two large co-
horts of structural magnetic resonance imaging (MRI) data combined 
with standardized neuropsychological assessments of mathematical 
ability (21) (Fig. 1). Our study included a primary discovery cohort 
comprising data acquired at Stanford University, consisting of 219 
children of ages between 7 and 13 years, and an independent Nathan 
Kline Institute-Rockland Sample (NKI-RS) validation cohort, which 
included data from 91 children within the same age range (Table 1 
and fig.  S1). We used canonical correlation analysis, a widely used 
multivariate analysis approach in brain-behavior association studies, 
to uncover associations between brain and behavioral measures by 
identifying maximally correlated linear combinations between two 
sets of variables (22, 23). Our study features one of the largest cohorts 
of brain structure–mathematical abilities data, specifically targeting 
school-age children during a critical period of knowledge acquisition. 
To our knowledge, this represents a unique multicohort dataset of its 
kind in the field. We hypothesized that multivariate patterns of struc-
tural brain features, encompassing the posterior parietal, ventral 
temporal-occipital, and prefrontal cortical areas, would predict indi-
vidual differences in children’s mathematical abilities. We further hy-
pothesized that these associations would be replicated across the two 
independent cohorts, thereby establishing a mathematical ability–
related imaging phenotype (MAIP).

The second aim of our study was to identify transcriptomic 
molecular factors associated with the MAIP. Genetic factors are 
thought to play a critical role in the development of brain structures 
that support complex cognitive functions such as mathematics (24). 
Prior research has suggested that mathematical abilities may be highly 
heritable, with genetic factors accounting for 60 to 70% of the ob-
served variance in twin studies (25–27). One recent study pinpointed 
a specific gene, ROBO1, that is significantly associated with gray 

matter volume in the right inferior parietal cortex, a region implicated 
in mathematical cognition (28). However, it is unlikely that complex 
cognitive functions like mathematical abilities are solely supported 
by single gene–brain region association (4, 29). Notably, a ground-
breaking genome-wide association study (GWAS) by Lee et al. (30) 
demonstrated that the genetic landscape is multifaceted, identifying 
618 and 365 single-nucleotide polymorphisms (SNPs) associated with 
mathematical ability and the highest math class taken, respectively, 
from a sample of 1.1 million individuals. We examined how genome-
wide gene expression, encompassing known candidate genes, varies 
across brain regions linked to mathematical abilities. Our approach 
offers a broader and more detailed perspective on transcriptomic 
and molecular factors linked to mathematical cognition, thereby 
enhancing our comprehension of the biological underpinnings of 
these abilities.

The Allen Human Brain Atlas, a comprehensive genome-wide 
atlas of gene expression built on ~3000 tissue samples covering the 
whole human brain with high spatial resolution (31), provides an 
unprecedented opportunity to bridge the gap between brain imaging 
and transcriptome measures (32–34). This atlas addresses the limita-
tions of previous studies (28, 30), which lack precise information 
regarding variations in gene-expression profiles across individual 
brain regions (31). In recent years, the Allen Human Brain Atlas has 
been instrumental in elucidating the transcriptomic and molecular 
factors that shape large-scale human brain organization, both in 
neurotypical adults (34), as well as normative and atypical brain de-
velopment (33, 35). These studies have unveiled a close link between 
the spatial patterns of gene expression and brain structure, indicating 
that transcriptional signatures can capture the underlying variations 
in molecular, biological, and cellular functions that drive functional 
specialization in the human brain (32, 35).

We leveraged the Allen Human Brain Atlas and conducted par-
tial least squares analysis to probe connections between gene ex-
pression and brain structures that account for individual differences 
in children’s mathematical abilities (33, 34, 36–38). Our analysis 
yielded two key measures: (i) brain-wide gene expression patterns 
related to spatial variability in MAIP and (ii) an annotated list of 
genes ranked by their impact on MAIP. We hypothesized that spe-
cific patterns of brain-wide gene expression would explain MAIP 
and that the most influential genes in these expression profiles 
would overlap with previously reported candidate genes related to 
mathematical abilities (30). Furthermore, we used BrainSpan to 

Table 1. Demographics and neuropsychological assessment scores of samples included in analysis of mathematical abilities. WASI, Wechsler 
Abbreviated Scale of Intelligence; WIAT-II, Wechsler Individual Achievement Test Second Edition. n.a., not available.

Stanford cohort NKI-RS cohort

n 219 91

Age 9.8(1.7) 10.1(1.9)

Gender (M:F) 120:99 46:45

WASI full-scale IQ 114.2(13.8) 106.2(12.9)

WASI verbal IQ 113.6(14.5) 105.9(11.0)

WASI performance IQ 112.0(15.3) 105.2(15.9)

WIAT-II numerical operations 110.5(20.1) 109.0(17.8)

WIAT-II math reasoning 113.2(15.6) n.a.
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examine the developmental trajectory of the observed gene expres-
sion profiles associated with MAIP.

The third aim of our study was to investigate whether transcrip-
tomic molecular factors correlated with the MAIP could serve as 
reliable predictive markers for individual differences in mathemati-
cal learning outcomes following cognitive interventions. Previous 
research has shown that while early math interventions are effective 
for many children who experience difficulties with mathematics 
(39–41), learning outcomes following the interventions have been 
shown to vary considerably across individuals (40, 42, 43). A par-
ticularly intriguing aspect of academic performance is the relatively 
high stability of mathematical abilities in children throughout their 
school years. Critically, the stability of educational and mathemati-
cal achievement across school years is shown to be largely explained 
by genetic factors, accounting for about 60% of the stability in edu-
cational achievement from early childhood to late adolescence (25). 
This observation not only emphasizes the essential role of genetics 
but also underscores the critical need to understand the underlying 
mechanisms that shape the interplay between genes and educational 
outcomes. In the present study, we sought to address this gap by 
examining the prognostic value of transcriptomic molecular factors 
associated with the MAIP for predicting learning outcomes follow-
ing cognitive interventions designed to improve mathematical skills. 
We leveraged brain imaging and learning measures from two dis-
tinct math interventions, in which children received training de-
signed to enhance one of two foundational numerical skills: (i) 
retrieval of math facts (40) or (ii) number sense (43). The two types 
of interventions were designed to remediate poor mathematical 
abilities in children, including those with mathematical learning 
disabilities. Children in these tutoring programs have demonstrated 
considerable variability in math learning outcomes in response to 
the interventions (39, 43, 44).

Transcriptome-imaging studies have begun to open avenues for 
the development of individual-level predictive tools. A notable ad-
vance in this field was made by Di Biase and colleagues (45), who 
developed an individual-level transcriptome similarity index (TSI) 
by correlating neuroimaging-based brain deviation maps of pa-
tients with the gene expression maps of specific cell classes. This 
work demonstrated the functional relevance of the TSI by linking it 
with individual polygenic cell-class scores derived from genotype 
data in patients with schizophrenia. Building on this innovative 
and validated approach, we used similar methodologies to identify 
transcriptome-based predictors for individual learning variations 
in response to math interventions. We developed a TSI to predict 
math learning outcomes; the TSI was derived by correlating the 
transcriptomic molecular factors associated with the MAIP with 
the individual brain structure patterns of each child. This index was 
calculated for every participant in the two math intervention pro-
grams, using structural MRI data collected before the commence-
ment of tutoring. We hypothesized that TSI would consistently 
predict mathematical learning outcomes across diverse learning 
contexts, thereby offering important insights into the fundamental 
role of gene expression in learning and skill acquisition.

Our study illuminates the complex interplay between brain 
structure, gene expression, and educational achievement and un-
covers transcriptome-based predictors to enable the identification 
of children who may benefit from more intensive intervention. Our 
findings have the potential to substantially enhance the develop-
ment of personalized educational approaches.

RESULTS
Identifying MAIP: Association between individual 
differences in mathematical ability and brain structure
We first used the Stanford discovery cohort to determine the re-
lationship between individual differences in mathematical ability 
and brain structure. Behavioral and structural MRI brain imaging 
data from 219 children (age: 7 to 13 years, M = 9.8 years, SD = 
1.7 years; 99 females; Table 1) who met criteria for high-quality data 
were used in the analysis (see Materials and Methods). Mathematical 
abilities were measured using grade-normed standardized scores 
of numerical operations and math reasoning subtests from the 
Wechsler Individual Achievement Test Second Edition (WIAT-II) 
(21). The numerical operations subtest assessed number writing, 
identification, production, and simple arithmetic skills, while the 
math reasoning subtest assessed counting, geometric shape identifi-
cation, and math problem-solving (numerical operations: M = 110.5, 
SD = 20.1; math reasoning: M = 113.2, SD = 15.6; Fig. 2A).

Gray matter volume was computed in each of the 246 regions of 
interest defined by the Brainnetome atlas (46). Subsequently, a multi-
variate canonical correlation analysis (22, 23) was conducted across 
219 children, with brain measures comprising gray matter volumes 
of the 246 regions of interest (Fig. 2A) and behavioral measures in-
cluding WIAT-II numerical operations and math reasoning scores. 
The canonical correlation analysis revealed a significant relationship 
between gray matter volume and mathematical abilities (r = 0.34, 
P = 0.023, permutation test 1000 times; Fig. 2B). Figure 2C illustrates 
the canonical correlation weights for brain and behavioral measures. 
Notably, the brain pattern/brain measure weight identified in the ca-
nonical correlation analysis was correlated with both math measures, 
WIAT-II numerical operations and math reasoning (with correlation 
coefficients of −0.7088 and −0.9999, respectively), likely reflecting a 
shared neuroanatomical basis for mathematical abilities across the 
two assessments. The results demonstrate that individual differences 
in mathematical abilities in children are associated with patterns 
of widespread variations in gray matter volume. Specifically, poorer 
(better) performance on both WIAT-II numerical operations and math 
reasoning was associated with higher (lower) gray matter volume 
in PPC, VTOC, and PFC—regions implicated in numerical cognition 
(2–4)—and lower (higher) gray matter volume in other regions, in-
cluding visual, posterior insular, and subcortical regions.

Additional control analyses revealed a similar canonical corre-
lation mode under different analysis strategies including permuta-
tion inference (47), controlling for potential confounds, such as age 
and sex, and dimension reduction thresholds (Supplementary Text 
and table S2), highlighting the robustness of our findings. Further-
more, we validated our findings by implementing a 10-fold cross-
validation approach and testing prediction of mathematical ability 
from an alternative assessment. Significant results were obtained 
from both the analyses, affirming the generalizability of our find-
ings across participants and math assessments (Supplementary Text 
and fig. S3). In addition, no significant prediction was observed for 
nonmath measures including working memory or socioeconomic 
status (fig. S4), suggesting that the observed brain structure pat-
terns were specifically associated with mathematical ability rather 
than broadly representing general cognitive abilities or other non-
cognitive factors. Together, these results demonstrate that individu-
al differences in mathematical abilities are associated with distinct 
patterns of higher and lower gray matter volume distributed across 
the brain and provide an index for a MAIP.
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Fig. 2. MAIP: Multivariate relation between individual differences in mathematical abilities and brain structure and its replication in an independent sample. 
(A) Distributions of children’s mathematical performance, assessed by standardized scores of WIAT-II numerical operations and math reasoning subtests indicate a wide 
range of mathematical abilities in the Stanford cohort. The mean group-level gray matter volume map shows larger gray matter volume in posterior temporal, anterior 
and posterior cingulate, and anterior insular cortices, as well as smaller gray matter volume in sensorimotor and visual cortices. (B) A scatter plot of brain and behavioral 
canonical variates from a significant canonical correlation mode between gray matter volume and mathematical abilities (1000 permutations). (C) Canonical correlation 
mode showing that poorer performance on WIAT-II numerical operations and math reasoning subtests was associated with higher gray matter volume in PPC, dorsolat-
eral PFC, and VTOC and lower volume in the posterior insula and visual cortex. (D) The observed gray matter volume pattern was spatially correlated with brain activation 
maps of math-related terms from the NeuroSynth, including calculation, arithmetic, subtraction, symbolic, and addition. Z-scores of every activation map, encompassing 
both positive and negative values (i.e., deactivation), are shown. (E) Correlation of gray matter volume with math-related terms were significantly higher than those with 
reading-related terms (1000 permutations; nregions = 246; ***P < 0.001). (F) Distribution of children’s mathematical performance, assessed by standardized scores of 
WIAT-II Numerical Operations. Mean group-level gray matter volume map in the NKI-RS cohort shows similar patterns as the Stanford cohort. (G) Predicted WIAT-II 
Numerical Operations scores, generated by applying the Stanford cohort canonical correlation mode to individual gray matter volume in the NKI-RS cohort, were 
significantly correlated with actual Numerical Operations scores. Shaded areas indicate 95% confidence intervals.
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Association between MAIP and math-related meta-analytic 
brain activation maps
To confirm the cognitive relevance of the identified MAIP pattern, 
we compared it with math-related brain functional activation maps 
available in the Neurosynth database derived from term-based meta-
analyses (48). The math-related terms in the Neurosynth database 
included “symbolic,” “arithmetic,” “subtraction,” “calculation,” and 
“addition,” pinpointing multiple brain regions consistently activated 
during math task performance in functional neuroimaging studies 
(Fig. 2D). We performed a spatial correlation analysis between the 
identified MAIP pattern and the meta-analytic brain activation map 
for each term. We found that the regional brain activation distribu-
tion in all of these math-related terms was significantly correlated to 
the MAIP pattern (Ps < 0.001, permutation test 1000 times; Fig. 2D). 
Notably, the brain regions identified in these math-related terms in-
cluded areas with higher gray matter volume in the MAIP, including 
the PPC, VTOC, and PFC. Similar spatial correlation (Pperm < 0.001; 
fig.  S5) was observed between the identified MAIP pattern and a 
math-related brain activation map derived from a meta-analysis of 
math-related functional neuroimaging studies exclusively focused 
on children (table  S3). Furthermore, we observed that the spatial 
correlations between the MAIP and meta-analytic brain activation 
maps for math-related terms were significantly higher than those be-
tween the MAIP and reading-related control terms, such as reading 
and writing (Psperm < 0.001; Fig. 2E and table S4), implying cognitive 
specificity for the spatial distribution of the MAIP pattern. Similar 
results were also observed in additional analyses using “math” and 
“reading” topic maps instead of term maps in the NeuroSynth data-
base (fig.  S6). These results demonstrate that the identified MAIP 
effectively captures brain organization and regional specialization 
specifically related to mathematical information processing, corrob-
orating findings from task-based functional neuroimaging studies.

Generalizing MAIP in an independent cohort: Replication of 
association between individual differences in mathematical 
ability and brain structure
Next, we sought to investigate the generalizability of the findings 
drawn from the Stanford discovery cohort by examining an inde-
pendent cohort whose age range matched that of the Stanford co-
hort. Specifically, we used data from the NKI-RS, a publicly available 
life-span dataset consisting of a large-scale community sample 
in Rockland County (49). Ninety-one children with high-quality 
structural brain MRI data and numerical operations scores from the 
WIAT-II were included in the NKI-RS cohort (age: M = 10.1 years, 
SD =  1.9 years; 45 females; Table 1 and Fig. 2F). Math reasoning 
scores from the WIAT-II were not available in the NKI-RS cohort. 
We computed gray matter volumes of 246 regions of interest for 
each child (Fig.  2F). To predict WIAT-II numerical operations 
scores for children within the NKI-RS cohort, we developed a pre-
diction approach that involved multiplying the gray matter volume 
of each child by the canonical vector of the observed canonical cor-
relation mode from the Stanford cohort. This process generated a 
math-weighted brain score, which was then adjusted by scaling it 
using the mean and SD of WIAT-II numerical operation scores from 
the Stanford cohort (see Materials and Methods for details). The 
correlation between the predicted and observed WIAT-II numerical 
operations scores across the children in the NKI-RS cohort was then 
calculated to evaluate the accuracy of prediction. We found a sig-
nificant correlation between the predicted and observed WIAT-II 

numerical operations scores within this independent validation co-
hort (r = 0.29, P = 0.005; Fig. 2G). Notably, no significant correlation 
was observed between the predicted score and word reading scores 
from the WIAT-II within the NKI-RS cohort (r = 0.07, P = 0.484). 
Furthermore, a direct comparison of correlation coefficients for math 
and reading ability revealed a significant difference between these 
two domains (t = 2.28, P = 0.025, Williams’s test), suggesting that 
the generalizability of our findings from the Stanford cohort per-
tains specifically to mathematical ability. Additional control analy-
ses with other nonmathematical measures reinforced the specificity 
of math ability–related findings (Supplementary Text). These results 
provide evidence of a generalizable MAIP pattern for specifically 
predicting mathematical ability in an independent cohort of age-
matched children.

Brain gene expression profiles associated with the MAIP
We examined gene expression profiles associated with the MAIP 
pattern using human brain-wide gene expression data from the Al-
len Human Brain Atlas (31). Gene expression maps, consisting of 
246 regions and 15,633 genes, were created through preprocessing 
using standardized imaging-transcriptomics methodology (50). We 
investigated the relationship between brain-wide gene expression 
maps and the MAIP using a partial least squares regression analysis 
(33, 34, 36–38). The partial least squares regression analysis revealed 
that the top three significant components explained 72% of the vari-
ance in the MAIP pattern (Ps < 0.001, permutation test 1000 times, 
corrected for spatial autocorrelation; Fig. 3A and fig. S7) (51). Nota-
bly, the first component explained more than 50% of its spatial vari-
ance, while the second and third components each explained around 
10% of the variance, pointing to the dominant role of the first com-
ponent. This dominant first component was positively correlated 
with the MAIP and was characterized by a high gene expression 
profile in the parietal-prefrontal areas, including PPC, PFC, as well 
as the right VTOC (Fig. 3B), consistent with brain areas that showed 
higher gray matter volume in the MAIP. The other two components 
identified from the partial least squares regression are described in 
Supplementary Text and fig. S8. In addition, the partial least squares 
regression analysis yielded an ordered gene list for each significant 
component, based on the weight of genes contributing to the gene 
expression profiles. Information about three ordered gene lists is 
available in Data and materials availability. Together, these results 
suggest that distinct brain-wide gene expression profiles underlie 
the MAIP pattern, corresponding to the distributed pattern of vary-
ing gray matter volume underlying individual differences in math-
ematical abilities.

Developmental trajectory of brain gene expression profiles 
associated with the MAIP
We subsequently examined the developmental trajectory of gene ex-
pression profiles associated with the MAIP using human develop-
mental gene expression data from BrainSpan (52). Gene expression 
data from 469 brain tissue samples spanning 15 brain regions from 
participants aged from eight postconceptional weeks to 40 years 
old were downloaded. Genes that overlapped with the Allen Human 
Brain Atlas analyses were examined. Brain tissue samples were 
categorized into six developmental periods: prenatal, infancy, early 
childhood, late childhood, adolescence, and adulthood. Notably, 
the age range of the late childhood group overlapped with the 
age range of our sample. We then calculated the MAIP-weighted 
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average gene expression within each age bin for each brain region 
made available through BrainSpan. This yielded a developmental 
trajectory of brain region-wise gene expression profiles associated 
with the MAIP. Briefly, the developmental trajectory is indicative of 
how expression profiles of genes associated with mathematical abil-
ity in a brain region change with age. Notably, as shown in fig. S9, 
the gene expression related to the MAIP remained relatively high 
and stable from late childhood to adulthood across multiple brain 
regions. These results indicate the enduring stability of MAIP-
related gene expression profiles throughout later stages of develop-
ment, which aligns with earlier observations that underscore of 
educational achievement stability persisting from childhood to 
adolescence (25).

Association of MAIP-related gene lists with candidate math 
ability–related genes using gene set enrichment analysis
Next, we conducted gene set enrichment analysis to determine 
whether previously GWAS-reported candidate genes related to 
math are overrepresented in the most strongly correlated genes 

identified in the ordered gene lists associated with the MAIP. The 
candidate math ability–related genes were selected on the basis of 
the largest GWAS to date, involving 1.1 million individuals (30), 
which identified SNPs located in 386 genes associated with mathe-
matical ability and 248 genes associated with the highest math class 
taken. We used the ordered gene lists in descending order for each 
of the three significant components derived from the partial least 
squares analysis.

For the dominant first component, we found a significant en-
richment of GWAS-identified gene sets related to mathematical 
ability and the highest math class taken at the top of the ordered 
gene list. In other words, the genes most positively correlated 
with the weighted gene expression profile associated with the 
MAIP were overrepresented by candidate math ability–related 
genes [math ability: normalized enrichment score (NES) = 1.85, 
Padjust < 0.001; highest math class taken: NES = 1.62, Padjust = 0.002; 
Fig. 3C and table S5]. Additional partial least squares regression anal-
ysis revealed a similar gene expression profile pattern for MAIP when 
considering only the math-related genes (Supplementary Text and 

Fig. 3. Brain gene expression profiles associated with the MAIP. (A) Top three significant components from the partial least squares (PLS) regression analysis explained 
72% of the variance in structural brain organization–mathematical abilities association. (B) The dominant first component (PLS1) represents a transcriptional profile char-
acterized by high expression in PPC, PFC, and VTOC. (C) Gene sets related to both math ability (386 genes) and highest math class taken (248 genes), identified from a 
large-scale genome wide association study in 1.1 million individuals (30), were significantly enriched in the top ranked genes, based on gene set enrichment analysis. ES, 
enrichment score. (D) In contrast, gene sets related to reading ability (fig. S11) or disability (i.e., dyslexia), identified from previous genome wide association studies (53–
55), were not significantly represented in the top ranked genes. (E) The top of the ranked gene list was significantly enriched in genes related to the neuron and synapse 
parts and voltage-gated cation channel activity, based on Gene Ontology enrichment analysis. NES, normalized enrichment scores.
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fig.  S10). These results confirm the critical role of the candidate 
math ability–related genes in the expression profiles associated 
with the MAIP pattern.

We additionally examined whether previously GWAS-
reported candidate genes related to reading-related abilities and 
disabilities, i.e., dyslexia (53–55), exhibited any association with 
the MAIP. We found that gene sets related to reading did not 
show significant enrichment within our ordered gene list of the 
first dominant component [NES = −0.89, Padjust > 0.898 for the 
gene list from Doust et  al. (53), Fig.  3D; NES  =  0.64, Pad-

just  >  0.898 for the gene list from (54); NES  =  −0.68, Pad-

just  >  0.898 for the gene list from Price et  al. (55); fig.  S11]. 
Additional analysis showed that genes most positively correlated 
with the MAIP were not significantly overrepresented by work-
ing memory–related genes (56) (NES  =  1.54, Padjust  =  0.100; 
fig.  S12), which suggests distinct profiles for math ability–related 
genes and genes related to more general cognitive abilities. 
Findings of the other two components are described in Supple-
mentary Text. These results reveal that MAIP-related genes are 
specifically overrepresented by candidate math ability–related 
genes, but not reading or working memory–related genes, im-
plying a distinct link between MAIP and the up-regulation of 
candidate math ability–related genes.

Functional characterization of MAIP-related gene lists using 
Gene Ontology enrichment analysis
To elucidate the functional characteristics of the MAIP genes, 
we conducted a Gene Ontology enrichment analysis. All three 
Gene Ontology classes were included: biological process, cellu-
lar component, and molecular function. For the dominant first 
component, we found that the top of the descending-ordered 
gene list, i.e., the genes most positively related to the weighted 
gene expression profile, were significantly enriched for genes re-
lated to neurons, neuronal signaling and synaptic transmission, 
and voltage-gated potassium channel activity [false discovery 
rate (FDR)–corrected qs <  0.001; Fig. 3E and figs.  S13 to S15; 
see figs. S16 and S17 for the genes most negatively related to this 
profile]. Functional characteristics of gene expression profiles 
for the other two components are described in Supplementary 
Text and figs. S18 to S21. These results reveal that the MAIP is 
associated with the transcriptional profiles of genes that are en-
riched for neurons and voltage-gated potassium channel activity.

Linking MAIP-related gene expression profiles and brain 
structure to children’s math learning outcomes
To determine the prognostic value of the observed MAIP-related 
gene expression profile, we developed a TSI for the MAIP gene ex-
pression profile with each child’s brain structure and determined 
whether this similarity index can predict children’s math learning 
outcomes. We first examined an 8-week intervention dataset com-
prising 24 children (age: 7 to 10 years, M = 8.4 years, SD = 0.5 years; 
14 females; Table 2) (40). Gray matter volume of 246 brain regions 
was estimated for each child on the basis of the structural brain im-
age acquired before tutoring. Learning outcome was measured as 
the improvement in processing speed for math problems in an arith-
metic verification task in response to tutoring (Materials and Meth-
ods). We computed three TSIs in each child, corresponding to each 
of the three significant gene expression profiles identified by the par-
tial least squares regression analysis. Each index was calculated as 
the correlation between MAIP gene expression profiles and gray 
matter volumes in each child. We then related these indices to learn-
ing outcomes and generated predicted scores using a general linear 
model, with TSIs as predictor variables and learning outcome as the 
response variable. As shown in Fig. 4A, these three similarity indices 
for the three components together significantly predicted learning 
outcomes in the 8-week intervention dataset (r = 0.62, P < 0.001). 
Similar results were observed when using the similarity index of 
only the dominant first component, with a large TSI associated with 
intervention-induced improvement in response time for math prob-
lems (r = −0.43, P = 0.034). These results remained significant when 
controlling for age or sex (Supplementary Text).

We additionally examined whether behavioral or brain anatomi-
cal measures alone could predict children’s future learning outcomes 
in response to math interventions and found that our TSI, which 
combined multimodal information, outperformed unimodal be-
havioral and brain anatomical measures in predicting intervention-
induced math learning (Supplementary Text).

Linking MAIP-related gene expression profile and brain 
structure to children’s math learning outcomes: Replication 
and generalizability analysis
Next, we sought to replicate and demonstrate the generalizability of 
these findings using a 4-week intervention dataset (n = 61 children; 
age: M = 8.2 years, SD = 0.6 years; 33 females; Table 2), which 
constituted an independent intervention sample that also did not 

Table 2. Demographics, neuropsychological assessment scores, and tutoring-induced learning gains of samples included in analysis of mathematical 
learning. 

8-week intervention cohort 4-week intervention cohort

n 24 61

Age 8.4(0.5) 8.2(0.6)

Gender (M:F) 10:14 28:33

WASI full-scale IQ 107.3(12.1) 108.6(12.9)

WASI verbal IQ 108.1(13.5) 109.8(12.8)

WASI performance IQ 105.0(15.9) 105.9(14.7)

Learning gains* −679.5(638.0) −51.8(169.1)

*Tutoring-related changes in response time (milliseconds) for the arithmetic verification task in the 8-week intervention cohort; and tutoring-related changes in 
numerical distance effects on response time (milliseconds) in the symbolic quantity discrimination task for the 4-week intervention cohort.
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overlap with the cohort used to construct the MAIP (43). Gray mat-
ter volume of 246 brain regions was estimated for each child on the 
basis of the structural brain image acquired before tutoring. Learn-
ing outcome was measured as improvement in the numerical dis-
tance effect of processing speed for math problems in a symbolic 
quantity discrimination task in response to tutoring (Materials and 
Methods). As described previously, we computed three TSIs in each 
child and generated predicted scores using a general linear model. 
As shown in Fig. 4B, these three similarity indices for the three com-
ponents together significantly predicted learning outcomes in the 
4-week intervention dataset (r  =  0.38, P  =  0.003). Similar results 
were observed using the similarity index of only the dominant first 
component, with a large TSI associated with intervention-induced 
improvement in response time for math problems (r  =  −0.25, 

P = 0.048). These results remained consistent when controlling for 
age or sex (Supplementary Text). Conventional unimodal prediction 
analysis yielded similar results as the 8-week intervention cohort 
(Supplementary Text). These results suggest that our multimodal TSI 
can reliably predict children’s learning outcomes in both intervention 
cohorts despite differences in the tutoring protocol, markedly outper-
forming conventional unimodal approaches.

DISCUSSION
We investigated the interplay between brain structure, transcrip-
tomic profiles, and individual differences in children’s mathemat-
ical abilities and responsiveness to interventions. Our investigation 
yielded three major findings. First, we uncovered robust associations 

Fig. 4. Similarity between the MAIP-related gene expression profiles and brain structure predicts learning outcomes in two math intervention cohorts with dif-
ferent tutoring protocols. For each of the two intervention cohorts, we developed a TSI, calculated as the correlation between regional gray matter volume and math-
ematical ability–related gene expression profiles (see also Fig. 1C). We estimated gray matter volumes and computed the TSI for the significant top three components/
gene expression profiles for each child using structural MRI (sMRI) data acquired before 8- or 4-week math tutoring. We then related these indices to children’s learning 
outcomes using a general linear model, with TSIs as predictor variables and learning outcomes as the response variable. We examined learning outcome prediction under 
two conditions: (i) using TSI for the first dominant component only (PLS1) and (ii) using TSI for all three components (PLS1, PLS2, and PLS3). (A) In the 8-week intervention 
cohort, children completed neuropsychological assessments (NP) and sMRI sessions before an 8-week math-tutoring program. Children’s learning outcomes were mea-
sured as tutoring-induced changes (posttutoring minus pretutoring) in the speed of math problem solving. TSI predicted children’s learning following the 8-week math 
tutoring. (B) In the 4-week intervention cohort, children completed neuropsychological assessments and sMRI sessions before a 4-week math-tutoring program. Chil-
dren’s learning outcomes following tutoring were measured as tutoring-induced changes (posttutoring minus pretutoring) in the numerical distance effect (NDE), which 
was computed as the difference in the speed of number comparison for near (3:4) compared to far (2:7) distance conditions. TSI predicted children’s learning following the 
4-week math tutoring. Shaded areas indicate 95% confidence intervals. ms, millisecond; RT, response time.
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between gray matter volume and individual differences in children’s 
mathematical abilities, which were replicated across two indepen-
dent cohorts. Second, we found that gene expression profiles ac-
counted for 72% of the spatial variance in the association of gray 
matter volume with children’s mathematical ability. Notably, enrich-
ment analysis revealed that the highest contributors to the gene ex-
pression profile overlapped with mathematical ability–related, but 
not reading- and working memory–related, genes. In addition, we 
showed that these genes were enriched for neurons, synaptic ele-
ments, and potassium channel activity. Third, we developed TSI that 
measured the extent to which each child’s brain anatomy aligned 
with brain-wide gene expression profiles linked to mathematical 
abilities. We found that TSI, measured before intervention, predicted 
learning outcomes in response to math tutoring. This predictive 
ability was replicated in two different cohorts of children, despite 
variations in tutoring content and duration and participant profiles. 
Together, these findings not only delineate robust brain structural 
features and transcriptomic signatures that underlie mathematical 
abilities but also reveal the potential of transcriptome-imaging mea-
sures in predicting math learning outcomes. Our findings pave the 
way for a deeper understanding of the neuroanatomical, transcrip-
tomic factors and molecular processes driving mathematical cogni-
tion and learning.

Neuroanatomical correlates of individual differences in 
mathematical ability and identification of a robust MAIP
Our first goal was to investigate the associations between gray mat-
ter volume and individual differences in children’s mathematical 
abilities. We implemented a comprehensive multivariate analysis 
strategy across two large, independent cohorts, marking a substan-
tial advance over previous research that was largely limited to uni-
variate analyses focused on individual brain regions and confined to 
single cohort studies (refer to table  S1 for a summary of previ-
ous studies).

Multivariate canonical correlation analysis yielded a MAIP, char-
acterized by higher gray matter volume associated with lower 
mathematical abilities in parietal, ventrotemporal, and PFC regions 
implicated in mathematical cognition (2–4). The validity of the MAIP 
was confirmed by its significant overlap with functional activation 
maps drawn from meta-analyses of functional neuroimaging (func-
tional MRI) studies using tasks related to numerical reasoning and 
mental arithmetic. A close correspondence was observed across 
various math-related terms and math topic maps, reinforcing the 
robustness and cognitive relevance of the MAIP. Furthermore, spa-
tial correlations between the MAIP and meta-analytic brain activa-
tion maps for math-related terms were significantly higher compared 
to those between the MAIP and control terms and topic maps, such 
as reading and writing. These results highlight the functional rele-
vance of the MAIP, revealing that mathematical abilities are under-
pinned by a distributed network of brain regions. Results challenge 
the notion that mathematical abilities rely on any single region op-
erating in isolation. This insight represents a substantial advance 
over previous neuroimaging studies linking mathematical cognition 
specifically to individual brain regions, such as the PPC. Moreover, 
our study fills a critical gap by elucidating brain regions that collec-
tively underpin individual differences in children’s mathematical 
abilities. Our findings align with an emerging systems neuroscience 
perspective, which emphasizes the role of distributed brain net-
works in mathematical cognition (2–4).

Our findings also help to resolve inconsistencies in previous re-
search, which have reported mixed findings, ranging from positive 
(12, 15), negative (5, 16), and even nonsignificant correlations (14, 
18) between gray matter and children’s mathematical abilities. A key 
distinction of our work is the unprecedented validation of our find-
ings across two independent cohorts. Notably, we used a cross-
cohort external validation approach, which is increasingly used 
and highly recommended for demonstrating the generalizability of 
brain-behavior findings (57). In this approach, a prediction model is 
constructed using data from one cohort, and subsequently, this 
model is used to make predictions in an entirely independent co-
hort. In our case, we demonstrated that the brain-behavior model 
using data from the Stanford discovery cohort could predict the 
mathematical abilities of children within the NKI-RS validation co-
hort. Our results provide robust and replicable evidence for an im-
aging phenotype of mathematical abilities in children, overcoming 
the limitations of prior studies that lacked replication and predictive 
analyses across independent cohorts. Our identification of consis-
tent patterns of multivariate brain-behavior association deepens 
understanding of the neuroanatomical correlates of mathematical 
abilities. Furthermore, it paves the way for the creation of reliable 
and objective brain-based biomarkers, offering a powerful tool for 
the early detection of mathematical disabilities.

Transcriptomic factors and molecular processes associated 
with the MAIP
Our next goal was to investigate the transcriptomic factors and re-
lated molecular processes associated with mathematical abilities. To 
accomplish this, we used the Allen human brain-wide transcrip-
tomic atlas, which enabled us to probe the relationship between the 
MAIP, as characterized above, and gene expression profiles. We 
found that gene expression profiles accounted for more than 70% of 
the spatial variability in MAIP. This finding is particularly notewor-
thy when compared to prior transcriptome-imaging studies, which 
typically accounted for only 20 to 30% of the variance (33, 58–60). 
Our results stand out by demonstrating a substantially higher per-
centage of variance explained and suggest that genetic influences 
contribute significantly to mathematical abilities. Our findings are 
consistent with 60 to 70% heritability of mathematical abilities re-
ported in twin studies (25, 26).

Four key aspects emerge from the transcriptome-imaging analy-
sis. First, our transcriptomic analysis revealed that low mathemati-
cal abilities are associated with high gene expression in distributed 
brain regions involved in mathematical cognition, including the 
posterior parietal, prefrontal, and ventrotemporal temporal cortices 
(2–4). This pattern of gene expression coincides with areas display-
ing increased gray matter volume within the MAIP, suggesting that 
specific, brain-wide gene expression profiles form the foundation of 
the MAIP. Critically, in contrast to GWAS, our approach captures 
the variability in gene expression across diverse brain regions, each 
contributing to distinct cognitive processes (61). Through the inte-
gration of multimodal brain imaging, gene expression, and cogni-
tive measures, our study provides a more comprehensive and precise 
understanding of transcriptomic factors and molecular processes 
that drive mathematical abilities.

Second, we leveraged the BrainSpan gene expression atlas (52) to 
situate our findings within the broader context of brain develop-
ment, extending beyond the static snapshot of the adult brain pro-
vided by the Allen Human Brain Atlas. The BrainSpan atlas of the 
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developing human brain encompasses extensive gene expression 
data across various developmental stages. This comprehensive atlas 
includes the temporal and spatial transcriptional organization of the 
human brain from 8 weeks after conception to 40 years, allowing us 
to trace changes in gene expression across development. We plotted 
the developmental trajectory of gene expression by projecting the 
gene weights for MAIP derived from partial least squares regression 
analysis onto the gene expression data from BrainSpan, for each of 
the six developmental periods. The age range of the late childhood 
group overlapped with that of our sample. This analysis revealed the 
stability of gene expression associated with the MAIP from late 
childhood to adulthood. It suggests that the age differences between 
the donors in the Allen Human Brain Atlas and our developmental 
study sample are unlikely to have markedly influenced our findings. 
This result is broadly consistent with the previous observation of the 
high heritability of the stability of educational achievement from 
childhood to adolescence (25).

Third, the genes whose expression profiles most strongly corre-
lated with MAIP were not randomly distributed. Rather, they were 
significantly enriched by candidate genes previously reported in one 
of the largest GWAS of cognitive function (n = 1.1 million individu-
als), which identified 618 and 365 SNPs associated with mathemati-
cal ability and the highest math class taken (30). Notably, the MAIP 
genes were not significantly enriched by candidate genes associated 
with reading or working memory (53). This result highlights the 
domain-specific functional relevance of these genes to mathemati-
cal cognition. Our findings suggest that both allelic variation and 
brain-wide expression profiles converge on a specific set of candi-
date genes linked to mathematical abilities. Future research may fur-
ther clarify the specific mechanisms by which the genes within this 
set contribute to mathematical abilities.

Fourth, Gene Ontology analysis revealed that the genes whose 
expression profiles most strongly correlated with MAIP were also 
significantly enriched for neuron and synapse parts. This enrich-
ment aligns with evidence from studies in mice and nonhuman pri-
mates, which have shown that neuronal and synaptic plasticity are 
critical mechanisms underlying volumetric changes in the brain 
(62). These changes often occur in response to experiences and are 
thought to be foundational in learning and skill acquisition (63). 
Furthermore, previous research has shown that synaptic ion chan-
nels also modulate communication between neurons, a mechanism 
essential for learning (64, 65). In humans, postmortem studies have 
corroborated this link between brain structure and neuronal and 
synaptic plasticity (62, 66). Our findings extend this understanding 
by identifying a specific pattern of gene expression that aligns with 
these physiological phenomena, thereby offering further insight 
into the transcriptomic and molecular underpinnings of the MAIP 
and, by extension, mathematical abilities.

Gene ontology analysis further revealed that the genes whose ex-
pression profiles most strongly correlated with MAIP were also en-
riched in domains associated with potassium channel activity. This 
aligns with the large GWAS by Lee et al. (30), which implicated sev-
eral potassium channel–associated genes in mathematical ability, 
including KCNN2, KCNB1, KCNJ6, and KCNJ4. These genes are 
known to exhibit high expression levels in the brain, influencing 
the regulation of neuronal excitability (67, 68). Specific genetic 
anomalies, such as a frameshift deletion in KCNN2, have been found 
in individuals with learning disabilities (69) and neurodevelopmen-
tal delays (70). Other related studies have pinpointed connections 

between potassium channelopathies and intellectual disability (71, 
72). These observations, combined with our findings, underscore 
the critical role of voltage-gated potassium channels in learning, 
memory, and complex cognitive functions and suggest a transcrip-
tomic and molecular mechanism underlying individual variation in 
mathematical abilities. Our findings further suggest that altered ex-
pression of potassium channel–associated genes might contribute to 
mathematical disabilities. Considering the high heritability and per-
sistent nature of mathematical disabilities (25, 26), our study high-
lights a potential future research avenue in the neuropathology of 
dyscalculia (73, 74). Moreover, because noninvasive brain stimula-
tion techniques can alter potassium conductance (75), our findings 
may also inspire the development of innovative brain stimulation 
strategies to remediate learning difficulties, moving beyond tradi-
tional behavioral interventions. Together, these findings illuminate 
the transcriptomic and molecular correlates of the MAIP, enriching 
our understanding of the biological mechanisms underlying math-
ematical abilities.

Transcriptomic correlates of MAIP predict learning outcomes 
following math tutoring
Our final goal was to determine whether transcriptomic correlates 
of MAIP affect learning and to assess its prognostic value in fore-
casting learning outcomes in two independent cohorts of children 
who participated in math tutoring programs. We developed a TSI to 
quantify the alignment between MAIP-related gene expression pro-
files and individual gray matter volume patterns within these co-
horts. We then tested the efficacy of TSI in predicting children’s 
learning outcomes across both cohorts (39, 40, 43, 44). The TSI met-
ric acts as a crucial link, connecting the MAIP with changes in math 
performance due to training, where higher TSI values signify great-
er congruence between math ability–related transcriptomic factors 
and brain structure.

Children in the first intervention participated in an 8-week math 
tutoring program that aimed to enhance arithmetic problem solv-
ing. This involved three weekly 1-hour sessions, encompassing 4 les-
sons on basic number properties, 2 on counting, and 15 on number 
families, as well as two review sessions (40). The second intervention 
spanned 4 weeks and aimed to enhance number sense. This involved 
three weekly 1-hour sessions, covering topics such as counting prin-
ciples, enumeration, and nonsymbolic and symbolic number com-
parisons (43). Our analysis revealed that higher TSI consistently 
predicted greater learning gains in these varied intervention co-
horts, despite differences in the content and duration of the tutoring 
programs, outperforming conventional approaches. Thus, children 
whose brain structures more closely align with MAIP-related gene 
expression profiles may have neural substrates that are more condu-
cive to mathematical learning, leading to more effective responses to 
educational interventions.

These results elucidate how gene expression shapes academic 
performance and learning (25). Previous genetic studies have re-
vealed high heritability and identified candidate genes associated 
with mathematical abilities (25–27, 30). Our findings go beyond 
cross-sectional studies and overcome limitations of heritability and 
GWAS analyses, by providing evidence for the role of gene expres-
sion in learning following tutoring. Our study identifies and offers a 
quantitative framework for reliable biomarkers that predict indi-
vidual differences in response to interventions, regardless of the 
type of intervention delivered.
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Our findings also provide direct evidence for molecular factors 
that underlie both mathematical abilities and, more importantly, 
mathematical learning. A potential link between genetic mecha-
nisms of mathematical abilities and learning has been previously 
observed in an educational context by Harden et  al. (76), which 
used a polygenic score based on candidate genes previously identi-
fied in the GWAS by Lee and colleagues (30). The researchers found 
that students with higher polygenic scores in the ninth grade were 
more likely to pursue advanced mathematical classes by the end of 
high school. Our study corroborates and extends these findings 
more directly in the context of short-term math tutoring protocols 
and identifies the TSI as a robust predictor of responsiveness to in-
terventions designed to remediate mathematical difficulties. The 
development of reliable transcriptome-based biomarkers may help 
determine which children are more likely to benefit from these in-
terventions and address the pressing need to identify children who 
may require more intensive or alternative interventions (77). More 
generally, these findings bridge the conceptual and methodological 
gap between molecular- and macro-level neurobiological mecha-
nisms that underpin mathematical abilities and learning.

Our study, while providing critical insights into the neuroana-
tomical, transcriptomic, and molecular mechanisms of mathemati-
cal abilities and learning, has limitations that warrant consideration 
and point to avenues for future work. We focused on school-age 
children between 7 and 13 years old, a crucial phase for the acquir-
ing foundational mathematical abilities (78). Additional research 
with larger longitudinal datasets is needed to clarify how the neuro-
anatomical, transcriptomic, and molecular mechanisms of mathe-
matical abilities and learning change with age. Furthermore, Allen 
Human Brain Atlas donors were older adults. To mitigate this dis-
crepancy, we supplemented our analysis with data from the BrainS-
pan Developmental Gene Atlas, which included data from children. 
Although the utilization of BrainSpan revealed relatively stable gene 
expression from late childhood to adulthood, it is worth noting that 
this gene expression data has limited coverage of brain regions. Fur-
ther research with gene expression data spanning the whole brain in 
the developing brain is needed to systematically investigate how 
these transcriptomic and molecular mechanisms shape functionally 
relevant brain structures to support math-related information pro-
cessing across various stages of development. Currently, such inves-
tigation remains a formidable challenge, as constructing such atlases 
requires access to difficult-to-obtain postmortem brain samples 
from children and acquiring brain-wide gene expression profiles re-
quires substantial resources and specialized techniques. Our re-
search identifies a significant relation between individual differences 
in mathematical abilities and the MAIP, independent of the influ-
ences of working memory. To more fully dissect how fundamental 
cognitive operations affect the MAIP, future research will need to 
use more comprehensive and in-depth cognitive evaluations. These 
assessments are essential for identifying the precise cognitive mech-
anisms supporting the MAIP and clarifying the complex interac-
tions between cognitive abilities and mathematical proficiency.

We investigated the intricate interplay between neuroanatomi-
cal, transcriptomic, and molecular factors in shaping mathematical 
abilities and learning in school age children. Our multimodal analy-
sis established a replicable and generalizable MAIP and elucidated 
the molecular underpinnings of mathematical abilities by identify-
ing transcriptomic influences on the MAIP. With gene expression 
profiles explaining more than 70% of spatial variability in MAIP, our 

study demonstrated a connection between gene expression and 
mathematical proficiency. TSI reliably predicted learning outcomes 
across mathematical intervention contexts and cohorts. Together, 
our findings advance knowledge of the interplay between neuroana-
tomical, transcriptomic, and molecular correlates of mathematical 
ability, bridge micro- and macro-level brain and cognitive func-
tions, and uncover biomarkers of learning, with implications for 
personalized educational interventions.

MATERIALS AND METHODS
Experimental design
The study investigated the neurobiological mechanisms that drive 
individual differences in mathematical abilities and learning, us-
ing four datasets of children (ages 7 to 13 years) and a three-part 
analysis (Fig. 1). The first part examined the structural brain orga-
nization correlates of individual differences in mathematical abil-
ities, including a discovery analysis in the Stanford cohort and a 
replication/validation analysis in the NKI-RS cohort. The second 
part examined gene expression profiles associated with the struc-
tural brain organization underlying individual differences in 
mathematical abilities by using a partial least squares regression 
analysis, using human brain-wide gene expression data from the 
Allen Institute for Brain Science. The third part examined wheth-
er the coupling between mathematical ability–related gene ex-
pression profiles and a child’s structural brain organization can 
constrain or shape their mathematical learning in two math inter-
vention datasets with distinct tutoring protocols.

Participants
We used four cohorts of children in this study. Two of these co-
horts, namely, the Stanford discovery cohort and NKI-RS valida-
tion cohort, were used to identify and replicate the MAIP. The other 
two cohorts, namely, the 8-week math intervention cohort and 
4-week math intervention cohort, were used to investigate the 
MAIP and the underlying gene expression–based predictor for 
mathematical learning. Except for the NKI-RS validation cohort, 
all children were recruited from the San Francisco Bay Area through 
flyers or poster advertisements across multiple school districts. In-
formed consent was obtained from the legal guardian of each child. 
All study protocols were approved by the Stanford University Insti-
tutional Review Board. The inclusion criteria included having a 
normal full-scale intelligence quotient (≥80) as measured by the 
Wechsler Abbreviated Scale of Intelligence (WASI-I or WASI-II), 
with no history of claustrophobia, head injury, serious neurological 
or medical illness, psychosis, mania/bipolar disorder, major depres-
sion, substance abuse, sensory impairment, birth weight less than 
2000 g, and/or gestational age of less than 34 weeks. The four co-
horts are described below, and their demographic and neuropsy-
chological characteristics are summarized in Tables 1 and 2.
Stanford discovery cohort
A total of 284 children aged 7 to 13 years completed standardized 
neuropsychological assessment and structural brain MRI scan ses-
sions. The neuropsychological and brain imaging data were col-
lected in the same visit or two visits within a year, considering the 
duration considered to be stable standardized scores from the 
WASI-I or WASI-II and the WIAT-II. Data from 65 children were 
excluded because they did not meet the inclusion criteria, had ad-
ministration errors in neuropsychological assessments, had poor 

D
ow

nloaded from
 https://w

w
w

.science.org at Stanford U
niversity on June 04, 2024



Liu et al., Sci. Adv. 10, eadk7220 (2024)     31 May 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

13 of 20

structural brain image quality, or had tissue segmentation errors 
during brain gray matter volume estimation. Ultimately, 219 chil-
dren were included in the analyses.
NKI-RS validation cohort
We assembled a validation cohort of children whose age range 
matched that of the Stanford cohort using the enhanced NKI-RS 
(49), a large-scale community sample of participants across the life 
span. Specifically, we queried for children aged 7 to 13 years who had 
both structural MRI brain imaging and behavioral data of interest. 
On the basis of demographic and neuropsychological information 
available in NKI-RS and following the inclusion criteria described 
above, 91 children were included in the validation cohort.
8-week math intervention cohort
Twenty-four children in grade 3 completed an 8-week tutoring study. 
All children participated in the neuropsychological assessment 
session, underwent MRI scanning sessions before and after math 
tutoring, and engaged in an 8-week math-tutoring program. Tutoring 
sessions occurred three times per week, each of the tutoring sessions 
taking approximately 1 hour. The tutoring included 4 lessons on 
basic number properties, 2 lessons on counting, 15 lessons on num-
ber families, and 2 lessons on review. Response to tutoring was exam-
ined using an arithmetic verification task that assessed reaction time 
before and after tutoring. More details about the tutoring material, 
protocols, and task design are provided in (40).
4-week math intervention cohort
A total of 61 children in grade 2 and grade 3 participated in a 4-week 
tutoring study. All children participated in the neuropsychological 
assessment session, underwent MRI scanning sessions before and 
after math tutoring, and engaged in a 4-week math-tutoring pro-
gram. This cohort did not overlap with the 8-week intervention co-
hort. Tutoring sessions occurred three times per week, each of the 
tutoring sessions taking approximately 1 hour. The tutoring included 
counting principles, nonsymbolic and symbolic enumeration, and 
comparisons. Response to tutoring was examined using a symbolic 
quantity discrimination task acquired before and after training. More 
details about the tutoring materials, protocols and task design are pro-
vided by Chang et al. (43).

Standardized assessments of mathematical abilities
To measure children’s mathematical abilities, we used grade-normed 
standardized scores from two subtests for mathematics in the WIAT-
II neuropsychological assessment: (i) numerical operations and (ii) 
math reasoning. In the numerical operations subtest, each child was 
required to identify and write numbers as well as solve written cal-
culation problems and simple equations including addition, subtrac-
tion, multiplication, and division by writing the answers in the 
provided response booklet. In the math reasoning subtest, each child 
was required to identify geometric shapes and solve single- and 
multistep word problems involving time, money, and measurement, 
by answering a series of problems presented verbally and visually.

Assessments of learning outcomes
The math task performed during MRI scanning before and after tu-
toring was used for learning outcome assessment in two interven-
tion cohorts. We used the changes in processing speed to estimate 
the learning outcomes, considering potential celling effects on accu-
racy in the two intervention datasets. For the 8-week intervention 
cohort, arithmetic verification tasks involving solving two blocks 
with 24 single-digit addition problems were performed during MRI 

scanning. For each child, the averaged response time for correct tri-
als was calculated at the pretutoring and posttutoring, respectively. 
The pretutoring response time was subtracted from the posttutoring 
response time, yielding an index of response time change related 
to tutoring. The lower (more negative) value of this index indicated 
better learning outcomes with tutoring. For the 4-week intervention 
cohort, a symbolic quantity discrimination task involving 64 trials 
of comparison of magnitude between two symbolic numbers (1 
through 9, excluding 5) was performed during MRI scanning. Half 
trials had a near distance between two numbers (e.g., 6 and 7), while 
the other half had a far distance (e.g., 2 and 7). Thus, the numerical 
distance effect was calculated by subtracting the averaged response 
time for trials with far distance from those with near distance. For 
each child, the numerical distance effect at pretutoring was subtract-
ed from the numerical distance effect at posttutoring, yielding an 
index of change in numerical distance effect in response to tutoring. 
A lower value for this index indicated better learning outcomes due 
to tutoring.

MRI data acquisition
High-resolution T1-weighted spoiled grass gradient recalled inversion 
recovery three-dimensional MRI sequence was acquired in each child 
on a 3-T Signa scanner (General Electric) at the Richard M. Lucas 
Center for Imaging at Stanford University with a custom-built eight-
channel head coil for Stanford, 8-week intervention, and 4-week 
intervention cohorts. Head movement was minimized during the 
scan by placing cushions around the children’s head. During scan-
ning tasks, children held a custom-made MR-compatible computer 
mouse or button box in their right hand to respond to math tasks. 
MPRAGE sequence was acquired in each child on a 3.0 T Siemens 
TIM Trio at the Nathan Kline Institute with a 32-channel head coil 
for NKI-RS cohort. More details of NKI imaging protocols can be 
found at http://fcon_1000.projects.nitrc.org/indi/pro/nki.html. The 
detailed parameters of four cohorts are summarized in table S6.

Brain gray matter volume estimation
To estimate the gray matter volume for each child, we used the 
Computational Anatomy Toolbox (http://dbm.neuro.uni-jena.de/
cat12/) for SPM12 (www.fil.ion.ucl.ac.uk/spm/). The voxel-based 
morphometry analysis was performed with the default parameter 
setting. Briefly, the structural T1 images were denoised with a spatial-
adaptive nonlocal means denoising filter approach and resampled 
with trilinear interpolation to isotropic resolution of 1 mm by 1 mm 
by 1 mm, followed by bias correction and affine registration. Then, 
the resampled images were segmented into gray matter, white mat-
ter, and cerebrospinal fluid compartments and spatially normal-
ized to Montreal Neurological Institute (MNI) standard space with 
the Diffeomorphic Anatomical Registration Through Exponentiated 
Lie algebra method. The segmented modulated images for gray mat-
ter were obtained by multiplying the voxel values with the Jacobian 
determinant derived from the spatial normalization. In this study, 
we used the modulated images for gray matter, which represent the 
absolute gray matter volume rather than gray matter density or the 
relative scaling volume. Last, the segmented modulated gray matter 
images were smoothed with an isotropic Gaussian kernel of 12-mm 
full width at half maximum. To facilitate the association analysis 
between macroscopic brain structures and microscopic tran-
scriptional features as well as to reduce computational demands, 
we defined 246 regions of interest by using the Brainnetome 
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Atlas (https://atlas.brainnetome.org). For a given region, the re-
gional gray matter volume was obtained by averaging the values of all 
voxels within that region.

Association analysis between brain gray matter volume and 
mathematical abilities
To determine the multivariate association between gray matter vol-
ume and mathematical ability across children, we performed a ca-
nonical correlation analysis, a widely used method for examining 
brain-behavior associations (22, 23).

Gray matter volume values from 246 regions of interest and two 
standardized scores of mathematical abilities (WIAT-II numerical 
operations and math reasoning scores) for Stanford cohort were in-
cluded as two input variable sets (X and Y). The canonical correla-
tion analysis can determine the modes that relate two input variable 
sets by identifying the optimal linear combination (A and B) in each 
set that make their correlation ρ maximal

where U and V represent the brain or behavioral canonical variates; 
the canonical correlation is the correlation ρ between these two ca-
nonical variates

where A and B are canonical vectors to make the linear combination 
of X and Y to reach the maximal canonical correlation. To avoid 
overfitting issue of the canonical correlation analysis, we used a prin-
cipal components analysis on brain variable set before the canonical 
correlation analysis to perform the dimension reduction. We re-
tained components that explained 80 to 90% of the total variance and 
use the middle threshold as main result as highly similar results were 
observed across different threshold (see below). A permutation test 
was performed to estimate the statistical significance of modes from 
canonical correlation analysis (1000 times). For each permutation, 
we randomized the order of WIAT-II numerical operations and 
math reasoning scores in the behavioral variable set, reperformed 
the canonical correlation analysis, and recorded the resulting canon-
ical correlation under this randomized brain-behavior correspon-
dence. A null distribution of the canonical correlation was obtained 
with 1000 permutations. The P value for mode from canonical cor-
relation analysis was obtained by counting the number of the canon-
ical correlation in null distribution that higher than the observed 
canonical correlation from true brain-behavior correspondence. Be-
havioral measure weight and brain measure weight of the canonical 
correlation mode were obtained by correlating behavioral and brain 
canonical variates respectively against the original behavioral and 
brain variable sets.

To evaluate the robustness of the observed structural brain organi-
zation underlying mathematical ability, we examined the effects of 
different canonical correlation analysis strategies, including permuta-
tion inference (47), covariable regression, and threshold of dimension 
reduction. We estimated the similarity of the canonical correlation 
mode in each condition (alternative) with the main finding (original) 
by calculating their Pearson’s correlation for brain (U) and behavioral 
(V) canonical variates, which are the brain and behavioral canonical 
variates that characterized the canonical correlation mode. The 

similarity of the canonical correlation mode under different analysis 
strategies were described in table S2. To examine the robustness with-
in cohorts, we performed a 10-fold cross-validation analysis within 
Stanford cohort. To further establish the functional specificity of the 
MAIP pattern, we developed a prediction approach that involved the 
multiplication of the gray matter volumes of each child with the ca-
nonical vector of the observed canonical correlation mode and then 
correlated it with alternative measures of mathematical proficiency, 
and two nonmathematical metrics including working memory and 
socioeconomic status. The detailed results are described in Supple-
mentary Text.

Spatial association analysis between MAIP pattern and 
math-related meta-analytic maps from NeuroSynth
To further confirm the cognitive relevance of the observed MAIP 
pattern from the canonical correlation mode, we estimated its spa-
tial correlation with math-related brain activation meta-maps avail-
able from the NeuroSynth meta-analytic database (www.neurosynth.
org). First, we identified 5 math-related terms in the NeuroSynth 
database (48) (of a total of 1334 terms): “symbolic,” “arithmetic,” 
“subtraction,” “calculation,” and “addition.” For each term, we down-
loaded the uniformity test map, which identifies brain regions con-
sistently activated in functional MRI studies highly associated with 
that term. To facilitate the subsequent spatial correlation analysis 
with the downloaded math-related term maps from NeuroSynth, we 
remapped the MAIP pattern at the voxel level by assigning the same 
value for each voxel within the same region. We then calculated the 
Spearman correlation coefficient across voxels between the brain 
measure weights within the observed MAIP pattern and the z-scores 
within the brain activation meta-analytic map of each term to assess 
their spatial correlation. The brain activation meta-analytic maps 
were resliced to match the resolution of the gray matter volume im-
age. A permutation test was used to determine whether the correla-
tion coefficient was significantly higher than expected by chance. In 
each permutation, the nonzero voxels in the meta-analytic map 
were randomly reassigned, and the correlation coefficient was recal-
culated. This permutation was repeated 1000 times, yielding a null 
distribution for each term, while considering the varying size of 
nonzero voxels in each term. The statistical significance of the actual 
correlation coefficient was examined on the basis of this null distri-
bution. Since the available terms in the NeuroSynth database did not 
exclusively derive from studies involving children, we also per-
formed an additional meta-analysis. This meta-analysis exclusively 
included children studies from the references list in the NeuroSynth 
database (table S3) to further examine the potential influence on our 
results using the API Reference analysis tools provided by Neuro-
synth (https://neurosynth.readthedocs.io/en/latest/reference.html). 
Then, we calculated the Spearman correlation coefficient between 
the obtained children-only math-related brain activation map and 
the MAIP pattern. For visualization, we calculated the mean z-score 
for the brain map of each term in 20 bins of the MAIP to show how 
the value of the brain map for each term changes with MAIP pat-
tern. The 20 bins of the MAIP were divided on the basis of the gradi-
ent brain weights, with each bin including five percentiles of regions. 
In addition, we downloaded the brain activation meta-analytic 
maps of two reading-related terms, namely, “reading” and “written,” 
from the NeuroSynth database for a control analysis. Here, reading 
ability was chosen as a control to examine the specificity of math 
ability–related findings as (i) reading and math abilities are academically 

ρ = corr(U ,V ) (1)

U = AX (2)

V = BY (3)
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acquired skills often assessed together in educational settings; (ii) 
they share domain-general cognitive processes as demonstrated by 
overlapping brain circuits between these domains (79); and (iii) 
from a learning disability perspective, difficulties in both reading 
and math are relatively common (80). To examine the relative cog-
nitive specificity of the MAIP pattern for math-related terms, we 
calculated the Spearman correlation coefficient across voxels be-
tween the MAIP and the brain meta-analytic maps of these two 
terms and compared these correlations with those of math-related 
terms using a permutation test (1000 times). Additional validation 
analysis was performed by using the NeuroSynth “topic” maps as-
sociated with “math” and “reading” topics (Supplementary Text).

Replication analysis in NKI-RS cohort
To examine the replication and generalization of our findings from 
the Stanford cohort, we developed a prediction approach that uses 
the observed canonical correlation mode, i.e., the multivariable rela-
tion, on brain structures to predict math performance in an inde-
pendent NKI-RS cohort. Because numerical operations from the 
WIAT-II was the only available math-related standardized assess-
ment data for the NKI-RS cohort, our prediction approach was only 
used to predict WIAT-II numerical operations score. First, we esti-
mated the gray matter volume of 246 regions of interest based on the 
Brainnetome Atlas in NKI-RS cohort for each child using the same 
pipeline as in the Stanford cohort. We projected the gray matter vol-
ume of 246 regions of interest onto the same dimension using prin-
cipal component coefficient of Stanford cohort

where XNKI is the original gray matter volume matrix of individuals 
by regions for NKI-RS cohort, and XNKI.dm is the resulting trans-
formed matrix after dimension reduction using principal compo-
nents analysis as the same as Stanford cohort. PCA.Coeff represents 
transformation coefficient matrix from principal components anal-
ysis, and dm represents the specific threshold of dimension reduc-
tion. Here, dm is the middle threshold between 80 and 90% as the 
main result, which retained components that explained 85% of the 
total variance. The effect of this threshold on math performance pre-
diction was examined and reported in Supplementary Text and ta-
ble  S2. Then, we generated a brain score related to mathematical 
ability for each child by multiplying the canonical vector, denoted as 
A, with the individual gray matter volume pattern

where A is the canonical vector from canonical correlation mode 
from Stanford cohort. UNKI can be considered as a canonical cor-
relation mode weighted composite brain score that is related to 
mathematical ability. To generate the predicted WIAT-II numerical 
operations scores for NKI-RS cohort, we scaled the composite 
brain scores based on the mean (m) and standard deviation (SD) of 
WIAT-II numerical operations scores in the Stanford cohort

Last, we calculated the Pearson’s correlation coefficient between 
the predicted numerical operations scores and the actual numerical 
operations scores of the NKI cohort. As a control analysis, we also 
calculated the Pearson’s correlation coefficient between the pre-
dicted scores and the actual word reading standardized scores from 

WIAT-II in the NKI-RS cohort. Williams’s test was used to compare 
the correlation coefficient between math and reading. In addition to 
reading ability, we tested additional control measures to further en-
hance the specificity of math ability–related findings (Supplemen-
tary Text).

Association analysis between gene expression profiles and 
MAIP pattern
To explore whether the spatial layout of MAIP can be explained by 
regional gene transcription profiles, we examined the spatial asso-
ciation between the MAIP and the gene expression data from the 
Allen Human Brain Atlas.
Gene expression data and preprocessing
Regional microarray expression data were obtained from six post-
mortem brains (one female, ages 24 to 57, 42 ± 13) provided by the 
Allen Human Brain Atlas (https://human.brain-map.org). Data 
were processed with the abagen toolbox (version 0.1.3; https://
github.com/rmarkello/abagen) using a 246-region volumetric atlas 
in MNI space. First, microarray probes were reannotated. Probes 
not matched to a valid Entrez ID were discarded. Next, probes 
were filtered on the basis of their expression intensity relative to 
background noise, such that probes with intensity less than the 
background in ≥50% of samples across donors were discarded. 
When multiple probes indexed the expression of the same gene, we 
selected and used the probe with the most consistent pattern of 
regional variation across donors (i.e., differential stability). Here, 
regions correspond to the structural designations provided in the 
ontology from the Allen Human Brain Atlas. The MNI coordinates 
of tissue samples were updated to those generated via nonlinear 
registration using the Advanced Normalization Tools (https://
github.com/chrisfilo/alleninf). Samples were assigned to brain re-
gions in the provided atlas only if their MNI coordinates were di-
rectly within a voxel belonging to a parcel. All tissue samples not 
assigned to a brain region in the provided atlas were discarded. 
Interindividual variation was addressed by normalizing tissue sam-
ple expression values across genes using a robust sigmoid function. 
Normalized expression values were rescaled to the unit interval. Gene 
expression values were then normalized across tissue samples us-
ing an identical procedure. Samples assigned to the same brain 
region were averaged separately for each donor and then across 
donors, yielding a regional expression matrix (i.e., 246 regions × 
15,633 genes). Notably, only the 235 regions covered by gene ex-
pression data of Allen Human Brain Atlas and included into the 
following analysis.
Partial least squares regression analysis
The partial least squares regression analysis (38) has been widely 
used in recent studies (33, 34, 36, 37) to explore the association be-
tween gene expression profiles and the pattern of brain features. This 
analysis has the advantage of handling situations where the observa-
tions (i.e., regions) are fewer than the predictor variables (i.e., genes) 
and has well-developed scripts and a toolbox that are suitable for the 
imaging-transcriptomics association analysis (33, 51).

We performed partial least squares regression analysis with the 
predictor variables being regional gene expression maps and the re-
sponse variables being the MAIP pattern. The statistical significance 
of the variance explained by the partial least squares component was 
determined using a permutation test (1000 times) taking into con-
sideration the spatial autocorrelations in surrogate brain maps (51). 
Specifically, these surrogate brain maps were created on the basis of 

XNKI.dm =
XNKI

PCA.Coeffdm
(4)

UNKI = XNKI.dmA (5)

Ypred.NKI = UNKISD +m (6)
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the same value and spatial distance matrix among all brain regions. 
For each permutation, we performed partial least squares analysis 
using the same input of gene expression data but with the surrogate 
brain map of MAIP. We recorded the variance explained by the 
components in each permutation. The spatial similarity between 
MAIP and the weighted gene expression profile of each significant 
partial least squares component was calculated using Pearson’s cor-
relation. For each significant component, a bootstrapping method 
was used to correct the estimation error of the weight of each gene 
(33). Then, we ranked the genes in both descending and ascending 
sequences according to their corrected weights, which represent the 
positive or negative contribution to the component, resulting in two 
ranked gene lists for a given component in two directions. This anal-
ysis was performed by adopting the scripts shared by Whitaker et al. 
(33) and further customized as needed.

Developmental trajectory analysis of gene expression 
profiles associated with MAIP pattern
We performed a developmental trajectory analysis to explore how 
changes in gene expression related to MAIP with age, particularly 
interesting in the maturation direction of gene expression during 
the school-age period. We used BrainSpan, an atlas of the develop-
ing human brain, which includes microarray expression data from 
42 postmortem brains spanning from 8 weeks after conception to 
40 years old (19 female; www.brainspan.org). Normalized gene 
expression data of 524 brain tissue samples across 16 cortical and 
subcortical regions were provided by BrainSpan. In line with our 
research’s emphasis on the cerebral cortex and postnatal childhood, 
we excluded brain tissue samples from the cerebellum and early pre-
natal periods because of their undifferentiated nature. We limited 
our analysis to genes that overlapped with those used in the partial 
least squares regression analysis conducted earlier using the Allen 
Human Brain Atlas. This filtering process resulted in 13,786 genes 
and 469 samples spanning 15 regions for the subsequent analysis. 
First, we categorized samples from various ages into six develop-
mental stages of interest: prenatal (<38 weeks), infants (0 to 2 years), 
early childhood (2 to 6 years), late childhood (6 to 13 years), adoles-
cence (13 to 19 years), and adulthood (>19 years). We selected these 
age bins on the basis of their broad recognition as key developmen-
tal stages, the significant overlap of one age bin (late childhood) with 
our neuroimaging sample, and the availability of a sufficient number 
of brain tissue samples within each bin. We ensured that each bin 
contained at least three subsamples of different ages. Next, we calcu-
lated the MAIP-weighted average gene expression for each region 
and age bin. This involved multiplying the gene weight associated 
with MAIP by the expression data from BrainSpan and summing 
the values across all included genes. The gene weight linked to MAIP 
was derived from the first significant component identified in the 
previous partial least squares regression analysis. Through these 
processes, we generated representative expressions associated with 
MAIP for each region and age bin. After performing these calcula-
tions for all regions and age bins, we constructed a developmental 
trajectory illustrating the profiles of MAIP-related gene expression 
changes over the course of development.

Gene set enrichment analysis on MAIP genes
We conducted a gene set enrichment analysis to determine whether 
the candidate math ability–related genes reported in a previous 
large-scale GWAS (30) were overrepresented among the strongly 

correlated genes identified in our ordered gene lists. Gene set en-
richment analysis can detect this effect on either side of the ranked 
gene list, encompassing genes that are strongly positively or negative 
correlated. As a result, the descending or ascending sequences of 
ranked gene lists would yield the same outcome. In this context, we 
use the descending sequences of the ranked gene lists as the primary 
results for visualization.
Math-related gene set definition
The gene sets associated with mathematical ability were selected 
from the largest large-scale GWAS conducted to date, involving 
1.1 million individuals (30). This study considered two math-
related measures, namely, mathematical ability and the highest 
math class taken. We downloaded the SNP lists of mathematical 
ability and highest math class taken from their supplementary ma-
terials. To map the SNPs to known genes, we performed gene an-
notation by using SNPnexus, a web-based variant annotation tool 
(www.snp-nexus.org/v4/) based on the human genome assembly 
GRCh38/hg38. Only the genes overlapped by the SNPs were used 
in the subsequent analysis. Consequently, two math-related gene 
lists were compiled: one for mathematical ability (n  =  386) and 
another for the highest math class taken (n = 248). Detailed gene 
lists can be found in table S5. As part of our control analysis, we 
used three gene sets related to reading, as identified by recent 
GWAS (54, 55) and one gene set related to working memory, a 
more general cognitive function, as summarized by a review of 
genome-wise association studies (56).
Gene set enrichment analysis
The gene set enrichment analysis was performed using the cluster-
Profiler package (https://bioconductor.org/packages/clusterProfiler/). 
For each gene set, an enrichment score representing the level of en-
richment was obtained. Then, a normalized enrichment score (NES) 
was generated by comparing the enrichment score with those from 
permutation tests to correct for the size of the gene set. We also per-
formed gene set enrichment analysis for the gene lists of reading (53–
55) and working memory (56) as control analyses.

To further examine the role of the math-related gene set on MAIP, 
we reperformed partial least regression analysis with the predictor 
variables as regional gene expression maps of these genes only and 
the response variable as the MAIP pattern. The same permutation 
test was used for statistical significance (51). In addition, we con-
ducted the developmental trajectory analysis for the math-related 
gene set only similarly as described above.

Gene Ontology enrichment analysis on MAIP genes
We also performed Gene Ontology enrichment analysis on the 
ranked gene list to identify enriched Gene Ontology terms by using 
GOrilla (https://cbl-gorilla.cs.technion.ac.il). The analysis encom-
passed biological process, molecular function, and cellular compo-
nent categories. Significant enrichment was set to Benjamini-Hochberg 
FDR-corrected q < 0.001.

Associations between the TSI and mathematical 
learning outcomes
We used the 8- and 4-week intervention datasets to investigate 
whether the association between mathematical ability–related gene 
expression profiles and a child’s structural brain organization could 
predict their mathematical learning outcomes. A TSI was developed 
by calculating the correlation between structural brain organiza-
tion, quantified by regional gray matter volume, and the observed 
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significant mathematical ability–related gene expression profiles. 
This TSI measures how similar a child’s structural brain organiza-
tion is to brain-wide gene expression profiles related to mathemati-
cal ability. For each child in 8- and 4-week intervention datasets, we 
first estimated the gray matter volumes based on the structural 
brain MRI image before tutoring and computed TSI for each sig-
nificant gene expression profiles. Then, we predicted the learning 
outcome scores by using a general linear model, with these TSIs as 
predictor variables while learning outcomes as response variables in 
two intervention datasets, separately. We estimated the prediction 
effect for both the first dominant component and three components 
together. A permutation test was used to determine statistical sig-
nificance (1000 times).

Control analysis for learning outcome predictions
To determine the specificity of our findings, we performed several 
control analyses. First, we calculated a similarity index between a 
child’s structural brain organization and the MAIP. The MAIP simi-
larity index was calculated as the correlation between the MAIP 
pattern and gray matter volumes estimated on the basis of the struc-
tural brain image acquired before tutoring for each child. We related 
this MAIP similarity index to learning outcomes using a general 
linear model. We then correlated this similarity index with their 
learning outcomes in two intervention datasets. Second, we exam-
ined the predictive ability of behavioral performance before the in-
tervention on the learning outcomes. For the 8-week intervention 
cohort, we used the numerical operations and math reasoning 
scores from the WIAT-II, collected before the intervention as be-
havioral measures. For the 4-week intervention cohort, we used the 
math fluency scores from the Woodcock-Johnson III Tests of Early 
Cognitive and Academic Development collected before the inter-
vention as behavioral measure. Subsequently, we correlated be-
tween these behavioral measures and the learning outcomes to 
assess their predictive ability for the learning outcomes using a gen-
eral linear model. Williams’s test was used to compare the predictive 
ability of the correlation coefficient between these indices and TSI.
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