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a b s t r a c t

Previous studies exploring category-sensitive representations of numbers and letters have 

predominantly focused on individual brain regions. This study expands upon this research 

through computationally rigorous whole-brain neural decoding using Elastic Net (ND-EN), 

facilitating the analysis of neural patterns across the entire brain with greater precision. To 

establish the robustness and generalizability of our results, we also conducted innovative 

probabilistic meta-analyses of the extant functional neuroimaging literature. The inves

tigation comprised both an active task, requiring participants to distinguish between numbers 

and letters, and a passive task where they simply viewed these symbols. ND-EN revealed that, 

during the active task, a distributed network―including the ventral temporal-occipital cortex, 

intraparietal sulcus, middle frontal gyrus, and insula―actively differentiated between num

bers and letters. This distinction was not evident in the passive task, indicating that the task 

engagement level plays a crucial role in such neural differentiation. Further, regional neural 

representational similarity analyses within the ventral temporal-occipital cortex revealed 

similar activation patterns for numbers and letters, indicating a lack of differentiation in re

gions previously linked to these visual symbols. Thus, our findings indicate that category- 

sensitive representations of numbers and letters are not confined to isolated regions but 

involve a broader network of brain areas, and are modulated by task demands. Supporting 

these empirical findings, probabilistic meta-analyses conducted with NeuroLang and the 

Neurosynth database reinforced our observations. Together, the convergence of evidence 

from multivariate neural pattern analysis and meta-analysis advances our understanding of 

how numbers and letters are represented in the human brain.
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1. Introduction

The ability to decode visual symbols, such as numbers and 

letters, is a fundamental component of human cognitive skills, 

playing a critical role in literacy and numeracy (Ansari, 2008; 

Dehaene & Dehaene-Lambertz, 2016; Menon & Chang, 2021). 

For the past two decades, research investigating the neural 

representations of these symbols has primarily focused on the 

ventral temporal-occipital cortex (VTOC), a region known for its 

involvement in specialized visual processing (Behrmann & 
Plaut, 2013; Grill-Spector & Weiner, 2014; Kanwisher, 2010; 

Nestor, Plaut et al., 2011). Much of this work has concentrated 

on specific areas within the VTOC, such as the visual word form 

area, which is thought to be particularly sensitive to letters and 

words (Cohen & Dehaene, 1995; Dehaene & Dehaene-Lambertz, 

2016; Plaut & Behrmann, 2011; Vogel, Petersen et al., 2014). 

Additionally, researchers have explored the existence of num

ber form areas, hypothesized to be sensitive to processing nu

merical symbols (Shum, Hermes et al., 2013; Grotheer, 

Herrmann et al., 2016; Yeo, Pollack et al., 2020; Cai, Hofstetter 

et al., 2023). Despite these collective efforts, the precise nature 

of category-sensitive neural representations for numbers and 

letters — and the extent to which they depend on distributed 

brain networks beyond the VTOC — remains incompletely un

derstood. Comprehending such complex neural patterns would 

require computationally intensive decoding of high- 

dimensional data across a vast number of voxels encompass

ing the entire brain, which has been a significant challenge 

until recent advances in machine learning approaches.

For the visual processing of numerical symbols, previous 

studies have predominantly focused on the VTOC, and the 

extent to which category-sensitive responses could be more 

robustly represented in distributed brain areas beyond the 

VTOC remains underexplored. While intracranial electro

physiological studies involving a small number of patients have 

proposed the existence of a number form area in the lateral 

VTOC, suggesting its unique role in number processing (Shum, 

Hermes et al., 2013; Hermes, Rangarajan et al., 2017), fMRI 

studies in neurotypical individuals have yielded inconsistent 

findings on category-sensitive responses in the VTOC (Pollack & 
Price, 2019; Price & Ansari, 2011; Grotheer, Jeska et al., 2018; 

Merkley, Conrad et al., 2019). Recent meta-analyses of fMRI 

studies suggest that distinct neural representation of numbers 

is not confined to the VTOC but spans multiple regions in 

frontal, parietal, and occipital lobes (Sokolowski, Fias et al., 2017; 

Yeo, Wilkey et al., 2017). Moreover, the engagement of the VTOC 

appears to be task dependent, with heightened responses dur

ing active processing (Grotheer, Jeska et al., 2018; Pollack & Price, 

2019, Cai, Hofstetter et al., 2023) but not during passive viewing 

(Price & Ansari, 2011) of numbers.

For the visual processing of letters, there has been extensive 

investigation of the role of the VTOC, particularly the visual 

word form area, which is thought to be involved in recognizing 

letter shapes and letter strings (Longcamp, Anton et al., 2003; 

Cohen & Dehaene, 2004, Flowers, Jones et al., 2004). However, 

there is substantial evidence suggesting that the neural 

representation of letters extends beyond the VTOC, engaging 

a distributed network across temporal, parietal, and frontal 

cortices (James & Gauthier, 2006, Liu, Li et al., 2011; Lochy, 

Jacques et al., 2018; Long, Yang et al., 2020; Vin, Blauch et al., 

2024). While current evidence points to a distributed neural 

representation for letter symbols, the context in which these 

representations extend beyond the VTOC remains unclear. 

Additionally, the literature has been limited in terms of whole- 

brain analysis, raising questions about whether letter symbols 

are robustly represented across the entire brain in a manner 

similar to, or different from, number symbols. Critically, it is 

unknown whether these potential similarities or differences in 

neural representations persist under comparable task contexts, 

as few studies have directly compared number and letter pro

cessing using identical paradigms across the whole brain.

Collectively, these findings indicate that the sensitivity of in

dividual areas within the VTOC to number or letter symbols re

mains ambiguous and may be influenced by task demands or 

context. This suggests that the VTOC may not be as specialized for 

neural representation of categories of visual symbols as previously 

thought. Critically, the extent to which category-sensitive re

sponses to numbers or letters are more robustly encoded in dis

tributed brain areas is poorly understood. This gap in knowledge 

underscores the need for a broader exploration of how the brain 

processes these fundamental symbols in a network of regions that 

extends beyond individual brain areas such as the VTOC.

Here we apply quantitatively rigorous procedures to probe 

whole-brain decoding of neural representations for numbers 

and letters under different task contexts. Our aim is to provide 

a more comprehensive understanding of how these symbols 

are represented in the human brain, addressing the limita

tions of previous research that has focused primarily on spe

cific brain regions. Specifically, we utilized multivariate neural 

pattern analysis techniques that have emerged as powerful 

tools for investigating the intricate structure of neural repre

sentations and how the brain organizes and discriminates 

between category-sensitive information (Haxby, Connolly 

et al., 2014, Diedrichsen & Kriegeskorte, 2017; Hebart & 
Baker, 2018, Kragel, Koban et al., 2018).

We employed two distinct multivariate pattern analysis 

approaches to investigate the neural representation of num

bers and letters. The first approach employed a whole-brain 

neural decoding with Elastic Net (ND-EN) (Zou & Hastie, 

2005, Cho, Ryali et al., 2011; Bulth�e, De Smedt et al., 2014). 

ND-EN is particularly well-suited for examining intricate 

neural representations across the brain, a key aspect of our 

study. This method offers several key advantages in this 

context. First, ND-EN can handle the complexities of high- 

dimensional brain imaging data, striking a balance between 

model complexity and prediction accuracy. This is achieved 

by combining the strengths of both ridge and lasso regression 

techniques, through L1 and L2 regularization, within the 

Elastic Net framework (Zou & Hastie, 2005). Second, ND-EN 

can identify task-relevant patterns and connections, ena

bling the integration of information from distributed brain 

regions, overcoming limitations of univariate and other 
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multivariate methods. We supplemented this analysis with 

neural representational similarity (NRS) analysis (Xue, Dong 

et al., 2010; Qin, Cho et al., 2014; Schlichting, Mumford et al., 

2015). This analysis enabled us to examine whether individ

ual regions, such as the VTOC, encode numbers and letters 

similarly, providing a more detailed view of category-specific 

neural representation within these key areas.

In the empirical research component of our study, we first 

applied ND-EN to investigate how distributed brain areas 

collectively contribute to the differentiation between repre

sentations of numbers and letters. Subsequently, we utilized 

neural representational similarity (NRS) analysis to examine 

whether numbers and letters elicit similar activation patterns 

in specific brain areas of interest. Our hypothesis was that 

a distributed network, including subdivisions of the VTOC and 

posterior parietal cortex, would jointly represent various cat

egories of visual symbols. Given existing evidence that 

category-specific neural representations are modulated by 

attention (Pollack & Price, 2019; Price & Ansari, 2011; Grotheer, 

Ambrus et al., 2016; Grotheer, Jeska et al., 2018; Merkley, 

Conrad et al., 2019), we examined whether the similarity or 

differentiation between numbers and letters would vary be

tween active and passive task contexts (Fig. 1A—C). We pre

dicted that in conditions where attention is actively directed 

towards numbers or letters, the differentiation between these 

categories would be more pronounced in the distributed 

network.

To test our hypothesis, we employed two distinct fMRI 

datasets, each corresponding to two distinct task states. The 

first dataset, acquired at Stanford, involved an active task, 

where participants were presented with sequences of num

bers and letters and required to determine whether an item 

had been shown previously. This task was designed to actively 

engage participants' attention and working memory. The 

second dataset, sourced from an open-access study (Merkley, 

Conrad et al., 2019), involved a passive task where participants 

simply viewed numbers and letters, occasionally responding 

to color changes in a fixation point. This passive task allowed 

us to examine neural responses to symbolic stimuli under 

minimal attentional demands.

In previous analysis of the passive task dataset (Merkley, 

Conrad et al., 2019) the authors conducted univariate ana

lyses comparing number and letter conditions with various 

control stimuli. A related study employed multivariate pattern 

analysis to examine the neural representation of numbers and 

letters specifically within subregions of the VTOC (Yeo, Pollack 

et al., 2020). However, in both approaches, findings regarding 

differentiation of numbers and letters in the VTOC were 

inconclusive due to limited scope of regional analysis. Our 

study significantly extends these analyses to explore whole- 

brain patterns of neural activity, allowing us to assess 

category-sensitive representations for numbers and letters 

across a broader neural network and across different task 

states. This novel approach enables a more comprehensive 

understanding of how task context modulates distributed 

neural coding of visual symbols.

In the meta-analysis component of our study, we sought to 

extend and generalize our findings using a large-scale neu

roimaging data from 14,371 fMRI studies in the Neurosynth 

database (Yarkoni, Poldrack et al., 2011). To achieve this, we 

employed NeuroLang (https://neurolang.github.io; Iovene & 
Wassermann, 2020), an advanced probabilistic logic lan

guage specifically designed to quantify the degree of associa

tion between regional brain activation and cognitive terms of 

interest. This innovative approach allowed us to integrate 

findings from a broad array of literature, thereby facilitating 

a comprehensive evaluation of our hypotheses concerning 

category sensitivity for numbers and letters in distributed 

brain regions.

We conducted a series of forward meta-analyses to iden

tify brain regions uniquely associated with numbers or letters. 

Our hypothesis was that processing of these categories would 

involve distinct, distributed brain regions. Subsequently, we 

conducted a series of reverse meta-analyses (CogAt; Poldrack, 

Kittur et al., 2011); to determine cognitive functions most 

frequently associated with specific VTOC subdivisions. We 

tested the hypothesis that these individual subdivisions 

would show no preference for numbers compared to letters, 

or vice versa. This comprehensive meta-analytic approach 

aimed to provide a broader, data-driven perspective on the 

neural representation of numbers and letters, contextualizing 

our empirical findings in the wider body of neuroimaging 

research.

Together, the integration of experimental data and 

advanced multivariate and meta-analytic techniques in our 

study offers a more comprehensive understanding of how the 

brain encodes numbers and letters. These findings contribute 

significantly to our knowledge of distributed coding of visual 

symbols in the brain, illuminating the broader principles un

derlying perception and cognition.

2. Materials and methods

2.1. Participants

We used two fMRI task datasets from two independent cohorts 

of participants. The first cohort comprised 49 adolescents and 

young adults who completed an active number-letter task 

(14—21 years; mean age = 18.4 ± 1.5 years; 24 females). These 

data were acquired at Stanford University. Data from 12 par

ticipants were excluded due to excessive head motion during 

MRI scans or incomplete fMRI task data. The final sample 

included 37 participants (14—21 years; mean age = 18.5 ± 1.5 

years; 21 females). The second cohort comprised 43 adults who 

completed a passive task (18—39 years; mean age = 25.3 ± 5.8 

years; 28 females) (Merkley, Conrad et al., 2019). These data 

were obtained from OpenNeuro (https://openneuro.org/ 

datasets/ds002033/versions/1.0.0) open-source dataset. Data 

from 3 participants were excluded due to left handedness and 

3 participants were removed due to incomplete fMRI task data. 

The final sample included 37 participants (18—39 years; mean 

age = 25.1 ± 5.9 years, 26 females).

All participants included in the current study were right- 

handed. No participants reported neurological, psychiatric, 

or vision disorders. All adult participants provided written 

informed consent. For participants under 18 years old, we 

obtained written informed consents from their parents/legal 

guardians and assent from participants. All participants 

received monetary compensation for their participation. The 
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Fig. 1 — Active and passive fMRI tasks were used to investigate regional and distributed brain representations of numbers 

and letters. (A—B) Active fMRI task: Experimental condition. Numbers or letters were shown in separate blocks, in which 

participants attended to a series of 8 numbers or letters (see also Methods for details). During two subsequent probe trials 

participants indicated whether they had seen the presented number or letter in the same block . (B) Active fMRI task: Control 

condition. A checkerboard block, which had the same total number of trials (10 trials) as the experimental condition without 

administration of probe trials, was used as the control condition. (C) Passive fMRI task. Participants completed a change 

detection task in which they indicated when the color of a hashtag (#) changed from white to red, in a series of trials where 

visual numbers, letters, non-alphanumeric symbols, and hashtags were presented. Adapted from (Merkley, Conrad et al., 

2019). (D) Behavioral performance in the active fMRI task. Participants were significantly more accurate and faster in the 

number compared to the letter condition. (E) Analysis pipeline. Preprocessed fMRI data from the active task were entered into 

a subject-level General Linear Model (GLM) to obtain activation maps for number > checkerboard contrast and 

letter > checkerboard contrast. These two maps were used in whole-brain neural decoding with Elastic Net (ND-EN) and 

neural representational similarity (NRS) analysis. An Elastic Net classifier was used in whole-brain ND-EN analysis. The 

Elastic Net penalizes voxels with low weights and produces a weight (feature importance) map. The NRS analysis used 

a whole-brain searchlight algorithm with 6-mm search radius. The passive task followed analogous analysis pipeline with 

relevant task contrasts (see Methods for details). Literature-based regions of interest (ROIs) were used for ROI-based analyses 

for active and passive fMRI tasks. (F—G) A series of forward and reverse meta-analyses were performed based on the 

Neurosynth database. Terms and brain regions identified at top 5% probability were considered significant results from 

meta-analyses. (F) Forward meta-analysis. The probability of all voxels mentioned in a study where the first term was 

mentioned but the second term was not mentioned was assessed. “digit” and “letter” terms were used as first and second 

terms (or vice versa). (G) Reverse meta-analysis. The probability of each of 89 cognitive atlas terms associated with the 

activation of a given ROI across extant fMRI literature was assessed. The bilateral VTOC derived from the NRS analysis and 

literature-based number form area (NFA) and visual word form area (VWFA) were used as ROIs. ***p < .001.
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study was conducted in accordance with the Declaration of 

Helsinki and was approved by the local ethics committee of 

the institution.

2.2. Experimental design and statistical analysis

We examined distinct and shared neural representation of 

visual numbers and letters in two sets of visual number and 

letter processing fMRI tasks that differed in task demand: 

active (high task demand) and passive (low task demand) 

tasks. For behavioral data analysis, two-tailed paired t-tests 

were conducted to compare participants' response time and 

accuracy between number and letter conditions in the active 

task. For the passive task, behavioral data were not provided 

in the open-source dataset and were not analyzed. Details of 

fMRI task design and statistical analyses of fMRI data are 

described below.

2.2.1. fMRI task design

Active task. Participants completed a symbolic delayed match- 

to-sample task in the MRI scanner, which consisted of two 

runs of number condition and two runs of letter condition 

(Fig. 1A). The task was programmed in Psychopy (Peirce, Gray 

et al., 2019) with a short block design. In each run, which las

ted 5.5 min, 8 blocks of symbol condition (letter or number) and 

8 blocks of visual baseline condition (black and white check

erboard) were presented. These 16 blocks were presented in 

a pseudo-randomized order with no more than 2 blocks from 

the same condition being presented consecutively. Each block 

started with a 10-s-long fixation, followed by 10 trials. In each 

trial (except for the last two probe trials for the symbol block; 

see below), a stimulus (an Arabic numeral, an alphabet in lower 

case, or a black and white checkerboard) was presented for 500 

msec, followed by a 100 msec interstimulus interval. At the end 

of each symbol block, two 3.5 sec probe trials were presented. 

During the probe phase, participants were asked to press a key 

to indicate whether or not they saw the presented symbol in 

the current block. Each symbol block lasted 23 sec and each 

checkerboard block lasted 16 sec.

All stimuli were presented using an LCD projector and 

a back-projection screen in the scanner. The Arabic numerals 

were selected from 0 to 9 and the alphabetical letters were 

selected from “a” to “z”. Since the probability of a number 

being shown in each trial is higher than the probability of 

a letter being shown, the frequency of each number/letter 

being presented was counterbalanced across symbol blocks. A 

72 × 72 pixel-checkerboard image was used in checkerboard 

blocks. The height of the symbols and fixation was set at 50 

pixels. The symbols were presented with a white color font at 

the center of a 1024 × 768 black screen.

Passive task. A detailed description of the passive task can 

be found in a previous publication (Merkley, Conrad et al., 

2019). Briefly, participants passively viewed various types of 

symbols in the scanner (Fig. 1B). They were instructed to pay 

attention to the color change of the fixation (a white hashtag) 

and press a key when the color changed to red. Arabic nu

merals from 1 to 9 and 9 capitalized letters L, S, N, R, P, E, D, C 

and G were used for generating the standard symbol, mirrored 

symbol, and scrambled symbol conditions. The scrambled 

symbols were generated by manually segmenting and 

rearranging the standard symbol into a novel shape. Each 

stimulus was presented twice in a run, which included a total 

of 108 trials. In addition, 6 catch trials with the red hashtag as 

the stimulus were included for participants to detect the color 

change. Each trial started with a fixation (a white pound sign) 

that lasted either 1000, 2000, or 3000 msec. The stimulus was 

presented for 500 msec. Participants completed a total of 4 runs 

of the passive task in the scanner. Each run started with a fix

ation for 16 sec and ended with a fixation for another 16 sec for 

a stabilized baseline. Compared to the active task, the passive 

task was less likely to require cognitive resources to maintain 

the symbols in working memory throughout each run.

2.2.2. MRI data acquisition and preprocessing

Active task. Task-based functional MRI data were acquired on 

a 3T GE scanner using a T2* weighted gradient echo-spiral 

in—out pulse sequence (TR = 2000 msec, TE = 30 msec, 

FOV = 220 mm2, matrix size = 64 × 64, pixel size = 3.4375 mm, 

slice thickness = 4 mm, flip angle = 80◦). A T1-weighted, high- 

resolution structural image was acquired for the anatomical 

co-registration of functional images (slice thickness 1 mm; in- 

plane resolution: 256 × 256, voxel size = 1.5 × .9 × 1.1 mm3). All 

functional images were preprocessed using SPM12 

(Ashburner, Barnes et al., 2020). The first five volumes of each 

time-series were discarded to allow for signal equilibration. 

The preprocessing pipeline included realignment, slice-timing 

correction, co-registration to subjects' structural T1 images 

and normalization to a 2 mm MNI152 template, and smooth

ing using a 6 mm full-width half-maximum Gaussian kernel 

to decrease spatial noise. Volumes with greater than .5 voxel 

scan-to-scan displacement along linear or rotational axes 

were de-weighted, as well as volumes with greater than 5% 

change in global signal. The proportion of volumes with scan- 

to-scan displacement higher than .5 voxel did not exceed 10% 

across tasks. To account for potential influences of un

matched head motion between groups, head motion param

eters were included as covariates of no interest in fMRI general 

linear model analysis.

Passive task. Details of the high-resolution T1 and T2*- 

weighted sequences can be found in the previous publication 

(Merkley, Conrad et al., 2019). In short, the images were ac

quired at a 3T Siemens Prisma Fit MR scanner using a 32- 

channel head coil (Siemens, Erlangen, Germany). An MPRAGE 

sequence was used (TR = 2300 msec; TE = 2.98 msec; flip 

angle = 9◦; in-plane resolution = 256 × 256 pixels; voxel 

size = 1 × 1 × 1 mm) for the T1 image and a single-shot gra

dient-echo planar sequence (TR = 1000 msec, TE = 30 msec, 

FOV = 208 × 208 mm, flip angle = 40◦, voxel 

size = 2.5 × 2.5 × 2.5 mm) was used for the functional image. 

For the analysis included in the current study, we used the 

same preprocessing procedures as the active task dataset 

described above for the passive task dataset and confirmed 

that original GLM results remained consistent across pre

processing procedures.

2.2.3. Functional MRI data analysis

2.2.3.1. INDIVIDUAL LEVEL GENERAL LINEAR MODEL (GLM). Active task. 

Individual level fMRI data was fit with a general linear model 

(GLM) using SPM12 (Ashburner, Barnes et al., 2020). Separate 

models were used for the number and letter tasks. For each 
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task, four task-relevant regressors (number/letter, checker

board, probe, and fixation) were modeled with a box-car 

function convolved with a canonical hemodynamic response 

function (HRF). In addition, 6 motion regressors entered the 

GLM to control for head motion during the task. First-order 

autoregressive model was used to address the autocorrelation 

in the fMRI time series. For each task, three contrasts of interest 

were generated (number/letter — fixation, checkerboard — fix

ation, and probe — fixation). The number/letter — fixation and 

the checkerboard — fixation contrasted was used to generate 

the number > checkerboard and letter > checkerboard con

trasts, which was used in further analyses.

Passive task. We used a same box car function convolved 

with an HRF to model the 6 task regressor (number, letter, 

mirrored number, mirrored letter, scrambled number, 

scrambled letter). First-order autoregressive model and the 6 

motion regressors were used to capture the autocorrelation in 

the signal and the head motion. Following the analysis in the 

original published paper based on this dataset, we adopted the 

number — scrambled number and letter — scrambled letter as 

the base contrast for further analyses.

2.2.3.2. NEURAL DECODING WITH ELASTIC NET (ND-EN) ANALYSIS. In 

order to examine the hypothesis that distributed regions in 

the brain jointly contributes to the differentiation between 

visual numbers and letters, we implemented a multivariate 

whole-brain ND-EN analysis. Specifically, to classify numbers 

versus letters, we fit a generalized linear model with Elastic 

Net regularization using Python package glmnet_python 

(Balakumar, Hastie et al., 2016) and a leave-one-subject-out 

cross-validation procedure.

Glmnet solves the problem 

min
ß0 ;ß

1

N

∑N

i=1

ωil
(
yi;ß0 +ßTxi

)
+ λ

[
(1 − α)||ß||

2

2

2
+α||ß||1

]

over a grid of values of λ, which controls the overall strength of 

the penalty, covering the entire range of possible solutions 

(Friedman, Hastie et al., 2010). Here, N is the number of obser

vations; i indicates the i-th observation; ωi is a weight applied to 

each observation (default is 1); ß are the coefficients of the 

model; xi are the features of observation i; yi is the class label of 

observation i; l(yi;ß0 +ßTxi) is the negative log-likelihood con

tribution for observation i. The Elastic Net penalty is controlled 

by α, the mixing parameter that determined the balance be

tween Lasso (L1) and Ridge (L2) penalties. When α = 1, the 

penalty ||ß||1 is purely Lasso (L1 norm). When α = 0, the penalty 

||ß||
2

2 is purely Ridge (L2 norm). Intermediate values of α give 

a mixture of Lasso and Ridge, which is Elastic Net penalty. Here, 

we assigned .1 to α for a moderate level of penalty.

The Ridge penalty shrinks the coefficients of correlated 

features towards each other but cannot perform variable se

lection, meaning it keeps all features in the model with 

reduced magnitudes (Hoerl & Kennard, 1970). In contrast, 

Lasso tends to select a small number of important features by 

shrinking some coefficients to zero, effectively discarding the 

less important ones, but it struggles when features are highly 

correlated, often selecting one feature from a group and dis

carding others (Tibshirani, 1996). Elastic Net combined the 

strengths of both methods, incorporating Lasso’s feature 

selection ability and Ridge’s handling of correlated features 

(Zou & Hastie, 2005). This makes it an optimal approach for 

a whole brain decoding analysis, where there is a large num

ber of correlated features.

In our analysis, all voxels within an omnibus-F-test-based 

mask, which was generated by detecting voxels showing 

stronger activation in numbers or letters compared to check

erboard and thresholding at voxel-wise FDR corrected p < .01, 

were fed into Elastic Net as features. The Elastic Net was 

trained to classify number and letter using the 

number > checkerboard and letter > checkerboard contrasts 

in the active task, and using the number > scrambled and 

letter > scrambled letter contrasts in the passive task. Per

mutation tests with 5000 iterations were used to determine 

the significance of the decoding accuracy. As the Elastic Net 

estimates the coefficient for each feature to indicate their 

relevant importance in the decoding, we used the absolute 

value of these coefficients as a measure of feature importance. 

We then obtained the peak coordinates from these clusters 

and generated 6-mm spherical ROIs around the peaks. The 

mean feature importance value was calculated for each ROI. 

We additionally examined the significance of the feature 

importance from literature-based ROIs. To do this, we 

obtained the mean feature importance from each ROI and 

compared with the null distribution established on other 5000 

mean feature importance values generated in the 5000- 

iteration permutation.

2.2.3.3. NEURAL REPRESENTATIONAL SIMILARITY (NRS) ANALYSIS. 

Multivariate NRS analysis was implemented to examine which 

brain regions show similar neural representational patterns 

between numbers and letters (Kriegeskorte, Mur et al., 2008; 

Kragel, Koban et al., 2018; Chang, Rosenberg—Lee et al., 2019; 

Schwartz, Zhang et al., 2021). In this analysis, in each partic

ipant, voxel-wise beta values from contrasts of interest were 

used to calculate spatial correlation between the contrasts to 

determine the NRS within a 6-mm spherical region. The esti

mated correlation coefficients were Fisher Z-transformed to 

generate the NRS for each voxel. In the current study, we 

examined the NRS between the number > checkerboard and the 

letter > checkerboard contrast in the active task and 

number > scrambled number and letter > scrambled letter 

contrasts in the passive task. We first examined NRS in ROIs 

based on prior literature, including the NFA and IPS (Yeo, Wilkey 

et al., 2017) and the VWFA (Chen, Wassermann et al., 2019) 

(Fig. 3A). Next, a whole brain searchlight algorithm was used to 

repeat this procedure for all voxels across the whole brain. The 

individual NRS maps were then entered into one-sample t-tests 

to compare the mean with zero and generate the group level t- 

maps, which were thresholded at voxelwise FDR corrected 

p < .001 and extended cluster size threshold of 100 voxels. Based 

on the peak coordinates in the thresholded NRS map, we gen

erated 6-mm spherical regions of interest (ROIs) around these 

peak voxels and obtained the mean NRS value from these ROIs.

For NRS in each ROI, Bayes Factor (BF) was obtained to fur

ther assess evidence for H1 or Ho (Keysers, Gazzola et al., 2020), 

using the BayesFactor package (Morey, Rouder et al., 2015) in R 

4.1.2 (R Core Team, 2013). BF values greater than 3 provide 

evidence for H1. BF values between .33 and 3 provide absence 

of evidence. BF values below .33 provide evidence for Ho.
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2.2.3.4. REGIONS OF INTEREST (ROIS) SELECTION. To examine simi

larity between neural representations of numbers and letters in 

the ventral visual stream as well as other brain regions impli

cated in number processing [e.g., the intraparietal sulcus (IPS)], 

we used ROIs based on prior literature, including number form 

area (NFA) and IPS (Yeo, Wilkey et al., 2017), and the visual word 

form area (VWFA) (Chen, Wassermann et al., 2019) (Fig. 3A) in the 

active and passive tasks. We used 6-mm spherical ROIs around 

peak coordinates of the regions reported in previous studies. The 

peak coordinate of the NFA ROI, which was reported in TAL 

space in Yeo et al., was converted to MNI space using the MNI 

Talaraich Tool (BioImage Suite: https://bioimagesuiteweb. 

github.io/bisweb-manual/tools/mni2tal.html).

2.2.3.5. META-ANALYSES OF BRAIN REGIONS ASSOCIATED WITH NUMBER 

AND LETTER PROCESSING AND COGNITIVE FUNCTIONS ASSOCIATED WITH THE 

VTOC REGIONS. In addition to the analyses of the empirical data, 

we performed a series of forward and reverse meta-analyses. In 

the forward meta-analyses, which identified brain regions 

associated with a given term, we included published fMRI 

studies in Neurosynth database using two search terms, digit 

(116 studies) and letter (173 studies), available in the database. 

The term digit was used as an alternate term to represent 

number, as the latter term was not available in the database. 

Here, we used two analytical approaches. First, we estimated 

the probability of a voxel that appeared in a study where digit 

appeared but letter did not. Second, we estimated the proba

bility of a voxel that appeared in a study where letter was 

mentioned but digit was not. These analyses yielded two 

probabilistic brain maps showing clusters associated with 

studies on digit (but not letter) or letter (but not digit). We used the 

top 5% probability to threshold the resulted probability map.

Next, to determine whether the VTOC is engaged in pro

cessing numbers and letters and/or other cognitive functions, 

we conducted a series of reverse meta-analyses, which iden

tified terms most likely associated with activation of a given 

ROI. Here we leveraged the Neurosynth (Yarkoni, Poldrack 

et al., 2011) database consisting of 14,371 published fMRI 

studies and 89 cognitive atlas terms (CogAt; Poldrack, Kittur 

et al., 2011). We estimated the log odds ratio of the probabil

ity of a search term appearing in a study where activation of 

an ROI also appears against the probability of the term not 

Fig. 2 — Whole-brain neural decoding with Elastic Net (ND-EN) reveals distributed brain areas that jointly differentiate 

between numbers and letters in the active fMRI task. (A) Brain regions with non-zero feature importance identified by Elastic Net. 

Multiple brain regions had non-zero feature importance, including the bilateral lateral occipital cortex (LOC), left fusiform 

gyrus, right intraparietal sulcus (IPS), right angular gyrus (AG), right insula, bilateral middle frontal gyrus (MFG), left primary 

sensory cortex, left premotor cortex, caudate, and thalamus. (B) Relative feature importance of individual brain regions. Feature 

importance that survived the Elastic Net penalty were observed in the thalamus, left primary sensory cortex, left fusiform 

gyrus, right superior temporal gyrus (STG), right IPS, bilateral LOC, and anterior prefrontal cortex. See also Table 3. L ¼ left; 

R ¼ right.

Fig. 3 — Neural representational similarity (NRS) between numbers and letters in the number form area (NFA), visual word 

form area (VWFA), and intraparietal sulcus (IPS) in active and passive fMRI tasks. 

(A) Regions of interest (ROIs). View of selected ROIs from Chen et al. (2019) (VWFA) and Yeo et al. (2017) (NFA and IPS). (B—C) 

NRS in literature-based ROIs. (B) NRS in the active fMRI task. High levels of NRS were detected in the NFA, VWFA, and bilateral 

IPS in the active fMRI task. (C) NRS in the passive fMRI task. NRS was low in all ROIs in the passive fMRI task. See also Tables 2 

and 3 L ¼ left; R ¼ right; ***p < .001.
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being mentioned where activation of the ROI is mentioned. 

We performed the reverse meta-analysis on two sets of ROIs, 

the bilateral VTOC clusters that showed significant NRS in the 

active task (Fig. 4A) and the VWFA (Chen, Wassermann et al., 

2019) and NFA (Yeo, Wilkey et al., 2017) ROIs from the liter

ature (Fig. 3A). The top 5% probability was used as the cut-off 

threshold. Both forward and reverse meta-analyses were 

conducted using NeuroLang, a probabilistic logic language 

(https://neurolang.github.io; Iovene & Wassermann, 2020).

3. Results

3.1. Behavioral performance in number and letter 

conditions in the active task

In the active task, participants were sequentially presented 

with 8 symbols (numbers or letters) in each symbol block 

(Fig. 1A). At the end of each symbol block, they were asked to 

determine whether a number or letter symbol was presented 

in the current block or not. Participants' accuracy was sig

nificantly higher in the number (M = 94.93%; SD = 4.38%) 

compared to the letter (M = 81.08%; SD = 8.78%) blocks [t 

(36) = − 9.17, p < .001, Cohen’s d = − 2.00; Fig. 1D]. Response 

times were significantly faster in the number (M = 985 msec; 

SD = 180 msec) compared to the letter (M = 1098 msec; 

SD = 190 msec) blocks [t(36) = 5.69, p < .001, Cohen’s d = .61; 

Fig. 1D].

3.2. Behavioral performance in number and letter 

conditions in the passive task

In the passive task, participants were asked to respond to the 

color change of a fixation symbol (hashtag) (Fig. 1C). It was 

reported in the original paper that “accuracy on the change 

detection task was high for all remaining participants 

(M = 99.12%; SD = 2.2%)” (Merkley, Conrad et al., 2019). Indi

vidual participants' behavioral performance data were not 

provided in the open-source dataset and no further analysis 

was performed regarding passive task performance.

3.3. Neural decoding with Elastic-Net (ND-EN) of 

numbers and letters in the active task

Our first goal was to determine whether distributed brain 

areas jointly contribute to differentiation between neural 

representations of numbers and letters. We used a whole- 

brain ND-EN approach with an Elastic Net classifier and 

cross-validation to identify brain areas that jointly contribute 

to differentiation between numbers and letters. This multi

variate ND-EN approach assigned a feature importance value 

(absolute feature weight) to each voxel across the whole brain 

(within the mask derived from an omnibus F-test; see 

Methods) to indicate its relative importance in the classi

fication of numbers versus letters. The Elastic Net combined 

feature elimination from Lasso and feature coefficient reduc

tion from Ridge, and as a result, features with low importance 

were assigned zero weights.

Table 1 — Neural decoding with Elastic Net (ND-EN): Brain 

areas with different features between numbers and letters 

in the active fMRI task.

ROI Feature 

importance

x y z

Left fusiform gyrus .012 − 47 − 48 − 12

Left lateral occipital cortex .011 − 38 − 73 2

Left middle temporal gyrus .002 − 50 − 33 − 1

Left dorsolateral prefrontal 

cortex

.005 − 36 30 26

Left premotor cortex .007 − 49 − 11 53

Left primary sensory cortex .013 − 52 − 23 52

Left visual cortex .007 − 28 − 80 − 1

Right angular gyrus .006 50 − 45 12

Right BA44 .007 47 19 31

Right insula .005 41 18 − 6

Right intraparietal sulcus .010 27 − 46 45

Right lateral occipital cortex .008 44 − 79 2

Right superior temporal gyrus .011 52 − 26 2

Right middle frontal gyrus .009 44 46 20

Caudate .007 − 6 7 7

Thalamus .021 8 − 15 16

Table 2 — Neural representational similarity (NRS) between numbers and letters in the active fMRI task.

ROI Mean SD t p x y z Bayes Factor

Literature-based ROIs

Number form area (NFA) (Yeo, et al., 2017) .361 .32 6.97 <.001 52 − 47 − 18 3.87*105

Visual word form area (VWFA) (Chen et al., 2019) .581 .25 14.06 <.001 − 45 − 57 − 12 1.76*1013

Left intraparietal sulcus (IPS) 

Yeo et al. (2017)

.400 .41 5.49 <.001 − 38 − 46 38 2.03*104

Right IPS (Yeo et al., 2017) .500 .31 9.92 <.001 39 − 52 48 1.17*109

Whole-brain NRS-based ROIs

Left dorsolateral prefrontal cortex .588 .27 13.18 <.001 − 48 24 28 2.64*1012

Left parietal cortex (IPS) .560 .24 13.92 <.001 − 32 − 54 48 1.29*1013

Left ventral temporal-occipital cortex (VTOC) (fusiform gyrus) .667 .18 22.54 <.001 − 44 − 62 − 8 4.39*1019

Supplementary motor area (SMA) .646 .24 16.49 <.001 − 6 8 62 2.14*1015

Right dorsolateral prefrontal cortex .424 .30 8.55 <.001 36 26 42 3.18*107

Right premotor cortex .514 .27 11.47 <.001 42 26 18 5.34*1010

Right parietal cortex .386 .29 8.19 <.001 52 − 40 46 1.19*107

Right VTOC (fusiform gyrus) .616 .20 18.79 <.001 36 − 52 − 8 1.27*1017
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Table 3 — Neural representational similarity (NRS) between numbers and letters in the passive fMRI task.

ROI Mean SD t p x y z Bayes Factor

Literature-based ROIs

Number form area (NFA) (Yeo et al., 2017) .070 .27 1.48 .15 52 − 47 − 18 .48

Visual word form area (VWFA) (Chen et al., 2019) .096 .37 1.60 .12 − 45 − 57 − 12 .56

Left intraparietal sulcus (IPS) 

Yeo et al. (2017)

− .031 .33 − .58 .56 − 38 − 46 38 .21

Right IPS (Yeo et al., 2017) .054 .36 .92 .37 39 − 52 48 .26

Whole-brain NRS-based ROIs

Left dorsolateral prefrontal cortex .007 .37 .11 .91 − 48 24 28 .18

Left parietal cortex (IPS) .007 .31 .13 .90 − 32 − 54 48 .18

Left ventral temporal-occipital cortex (VTOC) (fusiform gyrus) .160 .36 2.72 .01 − 44 − 62 − 8 4.16

Supplementary motor area (SMA) − .013 .31 − .25 .8 − 6 8 62 .18

Right dorsolateral prefrontal cortex .004 .28 .06 .94 36 26 42 .18

Right premotor cortex .002 .34 .04 .97 42 26 18 .18

Right parietal cortex .043 .35 .76 .45 52 − 40 46 .23

Right VTOC (fusiform gyrus) .143 .32 2.76 .01 36 − 52 − 8 4.52

Fig. 4 — Neural representational similarity (NRS) reveals shared neural representations between numbers and letters in the 

ventral temporal-occipital cortex (VTOC) in active and passive fMRI tasks. (A) Whole-brain NRS analysis. In the active fMRI 

task, NRS between numbers and letters was significant in the bilateral VTOC as well as dorsolateral prefrontal cortex 

(DLPFC), premotor cortex, and parietal cortex and the supplementary motor area (SMA) (see also Table 1). In the passive fMRI 

task, no brain region showed significant NRS between numbers and letters from the whole brain analysis at the same 

statistical threshold as the active fMRI task (see also Results). (B) NRS between numbers and letters in selected regions of interests 

(ROIs) in the active task. High levels of NRS between numbers and letters were observed in multiple brain regions in the 

active fMRI task. (C) NRS between numbers and letters in selected ROIs in the passive task. In the passive fMRI task, among the 

same set of ROIs examined as the active dataset, only the bilateral fusiform gyrus in the VTOC showed significant NRS 

between numbers and letters. L ¼ left; R ¼ right; **p < .01, ***p < .001.
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We first performed the ND-EN analysis in the active task. 

Here, we found that the classification accuracy (78.38%) was 

statistically significant based on permutation testing (p < .001, 

with 5000 iterations of permutation). The regularization pro

cedure revealed that 3.14% (927 voxels) of the total voxels had 

nonzero weights. These voxels spanned multiple clusters in 

prefrontal, parietal, and visual cortices, which jointly con

tributed to successful classification (Table 1 and Fig. 2A). We 

then obtained the mean feature importance from 6-mm 

spherical ROIs centered on the peak coordinates of all iden

tified clusters. Among all the ROIs, the thalamus, left fusiform, 

left lateral occipital and visual cortices, left premotor cortex 

and primary sensory cortex, right IPS, right lateral occipital 

cortex, right superior temporal gyrus, right inferior frontal 

gyrus (BA 44) and anterior prefrontal cortex are the regions 

that showed relatively higher importance features in the col

lection of brain regions that survived the regularization 

(Fig. 2B, see also Table 1).

We additionally examined feature importance in 

literature-based ROIs (Fig. 3A) and assessed statistical signifi

cance using permutation tests. Here, only the VWFA ROI from 

Chen et al. (Chen, Wassermann et al., 2019) showed sig

nificantly high feature importance (p = .02), which suggests 

a role for the VWFA as part of a network of brain regions 

including prefrontal, parietal, and visual cortices in category- 

sensitive representation of visual symbols. Together, our ND- 

EN analysis in the active task demonstrates that decodability 

between numbers and letters is based on multivariate pat

terns of activation in distributed brain regions.

3.4. ND-EN of numbers and letters in the passive task

To determine whether the patterns of distributed neural dif

ferentiation between numbers and letters are similar or dif

ferent without attention allocated to visual symbols, we 

applied our whole-brain ND-EN analysis to the passive task. 

This analysis yielded no significant classification between 

numbers and letters (decoding accuracy = 58.11%, permutation 

p = .20), which suggests that tasks with high, but not low, 

cognitive demand may elicit category-sensitive distributed 

neural representation of visual symbols. Additionally, the 

GLM in the passive task yielded no significant clusters in the 

digit > letter + scrambled digit + scrambled letter contrast, 

which is consistent with the finding reported in the original 

paper (Merkley, Conrad et al., 2019).

3.5. Neural representational similarity (NRS) between 

numbers and letters in the active task

Our next goal was to examine the similarity in the neural 

representation between numbers and letter. Previous studies 

have argued that the putative NFA is engaged in differentiating 

numbers and letters when attention is paid to numbers or 

letters. However, we did not find strong evidence supporting 

the involvement of the NFA in decoding between numbers and 

letters in our study. Therefore, we examined NRS between 

numbers and letters in ROIs drawn from the extant literature, 

including the NFA (Yeo, Wilkey et al., 2017) and VWFA (Chen, 

Wassermann et al., 2019) (Fig. 3A). Both p values and Bayes 

Factors (BFs) suggest high levels of NRS between numbers and 

letters in these literature-based ROIs (r = .36, p < .001, BF > 100 

for NFA; r = .60, p < .001, BF > 100 for VWFA; Table 2 and Fig. 3B). 

In addition, we examined the similarity in bilateral intra

parietal sulcus (IPS) regions (Yeo, Wilkey et al., 2017), which are 

consistently implicated in numerical cognition (Butterworth & 
Walsh, 2011; Piazza & Eger, 2016). The p values and BFs indicate 

high NRS between numbers and letters in the IPS (r = .41, 

p < .001, BF > 100 for left IPS; r = .52, p < .001, BF > 100 for right 

IPS; Table 2 and Fig. 3B).

Finally, to examine whether visual numbers and letters are 

represented similarly in other brain regions, we conducted 

a whole-brain NRS analysis (see Methods for details) in search 

of regions that show overlapping neural representations be

tween numbers and letters during the active task. Here we 

found significant NRS between numbers and letters in the 

bilateral VTOC as well as the bilateral frontal, predominantly 

in the left hemisphere, and parietal regions (rs = .39—.67; ps < 
.001, BFs > 100; Table 2 and Fig. 4A—B; see S2 Table for all 

significant clusters observed from the NRS analysis).

3.6. NRS between numbers and letters in the passive 

task

To investigate whether the patterns of overlapping neural 

representations between numbers and letters are similar or 

different under passive task conditions, we then performed 

regional NRS analysis on the literature-based ROIs. The results 

revealed no significant NRS between numbers and letters in 

these ROIs based on p values (rs < .08, ps > .11; Table 3 and 

Fig. 3C) during the passive task. However, the BF values for 

NRS between numbers and letters in NFA and VWFA ranged 

between .40 and .56, which suggests that non-significant 

findings from these regions (ps > .11) may be inconclusive (i. 

e., BF between .33 and 3).

At the whole brain level, we did not observe any cluster 

with significant NRS between letters and numbers (p < .01, 

FDR-corrected). At uncorrected statistical threshold, we found 

significant NRS between numbers and letters in the right VTOC 

(p < .001, uncorrected). To further examine whether similar 

representation of numbers and letters in the VTOC is modu

lated by task demands, we examined NRS between numbers 

and letters during the passive task in the ROIs derived from 

whole brain NRS analysis in the active task (Fig. 4A). Among 

these ROIs, the bilateral VTOC showed high levels of NRS based 

on both p values and BFs (left VTOC: r = .15, p = .01, BF = 4.16; 

right VTOC: r = .14, p = .009, BF = 4.52; Table 3 and Fig. 4C). No 

significant NRS was observed in other ROIs derived from the 

active task (rs < .042, ps > .45, BFs = .18—.23). These findings 

point to significant overlap in neural representation across 

numbers and letters in the VTOC during the passive task.

3.7. ND-EN and NRS of numbers and letters in age- 

matched cohorts in active and passive tasks

To address potential concerns about significant difference in 

age observed in the two cohorts of participants [active task: 

n = 37; 18.5 ± 1.5 years; passive task: n = 37; 25.1 ± 5.9 years; t 

(1,72) = 6.57, p < .001], we conducted additional analyses on 

age-matched subset of participants [active task: n = 25; 

19.2 ± .8 years; passive task: n = 15; 18.5 ± 1.5 years; t 
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(1,20) = 2.09, p = .06], and repeated the ND-EN and NRS ana

lyses in the age-matched sample. Findings from this analysis 

replicated the main findings from the original sample (see 

Supplementary Results and S1 Fig.), which suggests that 

these findings were not driven by developmental differences.

3.8. Forward meta-analysis of brain regions associated 

with number and letter processing

Next, we performed a series of meta-analyses (see Methods), 

which investigated the strength of association between digit 

(but not letter) or letter (but not digit) and each voxel in the 

brain. We used top 5% probability as the threshold for iden

tifying clusters significantly associated with digit or letter. No 

VTOC cluster appeared in the search of digit but not letter 

(Fig. 5A; S3 Table). Instead, bilateral IPS, inferior frontal gyrus/ 

BA44, and insula, and medial frontal cortex (premotor/motor 

cortex) were strongly associated with digit but not letter. These 

results are consistent with findings from previous meta- 

analysis (Martin, Schurz et al., 2015; Arsalidou, Pawliw-Levac 

et al., 2018; Hawes, Sokolowski et al., 2019; Murphy, Jogia 

et al., 2019). In the search of letter but not digit, we found 

that the left inferior frontal gyrus/BA 44 and IPS, and VWFA 

and medial frontal cortex (premotor/motor cortex) were 

strongly associated with letter but not digit (Fig. 5B; S4 Table). 

Together, our forward meta-analyses identified distributed 

prefrontal and parietal cortical regions associated with cat

egory sensitivity for number and letter processing.

3.9. Reverse meta-analysis of cognitive functions 

associated with the VTOC and its subdivisions

Finally, we investigated the brain regions associated with 

number and letter processing based on 14,371 published fMRI 

studies and 89 cognitive atlas terms (Poldrack, Kittur et al., 

2011) in the Neurosynth database (Yarkoni, Poldrack et al., 

2011). We performed a series of reverse meta-analyses (see 

also Methods) by assessing terms most likely associated with 

the VTOC and its subdivisions, NFA and VWFA, using Neuro

Lang, a probabilistic logic language (https://neurolang.github. 

io, Iovene & Wassermann, 2020). We tested the probability of 

each term being associated with bilateral VTOC, NFA, and 

VWFA ROIs (see also Methods; Fig. 6A—B; S5-S8 Tables). We 

used top 5% as the threshold for determining whether a term 

is significantly associated with a region. We found face recog

nition to be a term associated with both left and right VTOC 

and NFA. Object recognition and navigation were among terms 

associated with both left and right VTOC. Facial expression was 

a term associated with both right VTOC and NFA. Word rec

ognition was a term associated with both VWFA and NFA. 

Reading was a term associated with both left VTOC and VWFA. 

Importantly, we did not find digit or letter appearing as terms 

Fig. 5 — Forward meta-analysis yielded distributed neural systems associated with digit (but not letter) andletter (but not 

digit). (A) Meta-analysis of digit (but not letter) revealed a network including bilateral intraparietal sulcus (IPS), inferior frontal 

gyrus (IFG)/BA44, and insula, and medial frontal cortex. Notably, no VTOC subdivision was observed. (B) Meta-analysis of 

letter (but not digit) yielded canonical language areas in the left hemisphere, including the left IFG/BA44 and IPS and visual 

word form area (VWFA) and medial frontal cortex. L ¼ left; R ¼ right. Top 5% clusters associated with the given term are 

shown.
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associated with left or right VTOC, VWFA, or NFA. Instead, our 

reverse meta-analyses revealed that multiple cognitive func

tions were associated with the VTOC and its subdivisions, 

indicating lack of category sensitivity for numbers or letters.

4. Discussion

We combined experimental research and meta-analyses to 

address outstanding questions related to category sensitivity 

for numbers and letters in the human brain. Utilizing 

multivariate neural pattern analysis, we investigated how 

category-sensitive representations of these symbols are dis

tributed across the brain and examined the role of task level 

engagement in modulating this sensitivity. Brain-wide neural 

decoding using Elastic Net (ND-EN) revealed distinct neural 

representations for numbers and letters in multiple dis

tributed brain regions under conditions where attention was 

actively directed towards these symbols. Such differentiation 

was not evident during passive viewing. Additionally, regional 

neural representational similarity (NRS) analysis revealed that 

subregions within the bilateral fusiform gyrus in VTOC 

Fig. 6 — Reverse meta-analysis identifies multiple cognitive functions associated with the ventral temporal-occipital cortex 

(VTOC). (A—B) Digit or letter did not appear in (A) VTOC regions of interest (ROIs) that showed significant neural 

representational similarity between number and letters in active fMRI task (Fig. 4A) or (B) number form area (NFA) or visual 

word form area (VWFA) ROI (Fig. 3A). VTOC subdivisions were broadly involved in visual perception, including face 

recognition (left and right VTOC and NFA), object recognition (left and right VTOC), and word recognition (NFA and VWFA), and 

other cognitive processes, including navigation (left and right VTOC) and reading (left VTOC and VWFA). The radius of each 

circle represents the log odds ratio between the probability of a cognitive atlas term appearing in a study where the ROI 

appeared and the probability of the term not being mentioned in a study where the ROI was mentioned. Top 5% of all the 

terms associated with the given ROI are shown.
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displayed similar patterns of representation for numbers and 

letters, in both tasks. These empirical findings were further 

corroborated by our quantitative meta-analyses of an exten

sive body of fMRI studies, which confirmed involvement of the 

distributed brain regions in the processing of numbers and 

letters. Our comprehensive approach signifies a departure 

from the previous emphasis on specific areas within the 

VTOC. Our findings suggest a more intricate and inter

connected framework of neural representations, emphasizing 

the significance of considering multiple brain regions in pro

cessing of numbers and letters. This insight could potentially 

reshape our comprehension of how the brain orchestrates the 

processing of fundamental visual symbols.

4.1. Whole-brain decoding of numbers and letters

The primary goal of the empirical research component of our 

study was to determine the involvement of distributed brain 

regions in the categorical representation of numbers and 

letters.

To achieve this, we utilized brain-wide ND-EN analysis to 

assess the relative contribution of each brain voxel to the 

discriminability between numbers and letters across two dif

ferent tasks. Unlike other searchlight-based approaches, the 

ND-EN analysis allowed for the examination of voxels across 

the entire brain simultaneously. This enabled the identifica

tion of regions with the highest importance, while also ac

counting for contributions from the rest of the brain.

In the active task, we found that a network encompassing 

the ventral and dorsal visual pathways, along with the dor

solateral prefrontal cortex and insula, jointly contributed to 

the differentiation between numbers and letters (Fig. 1). Sev

eral areas demonstrated high contributions to the brain-level 

decoding of numbers and letters during this task. Specifically, 

this included the left fusiform gyrus, known for its involve

ment in processing visual words and forms (Dehaene & 
Cohen, 2011), and areas within the lateral occipital cortex, 

which are implicated in visual object recognition (Grill- 

Spector, Kourtzi et al., 2001; Kourtzi & Kanwisher, 2001). 

Intriguingly, the putative number form area, which has been 

reported to be specifically associated with numerical pro

cessing, did not show significant contribution to this differ

entiation. This suggests engagement of multiple VTOC regions 

in active processing and categorization of these symbols, 

rather than localization to a specific isolated subdivision.

In addition to the ventral visual pathway, our brain-wide 

ND-EN analysis also revealed involvement of the right intra

parietal sulcus (IPS), a key component of the dorsal visual 

pathway, in differentiating between numbers and letters. This 

finding aligns with the role of the IPS in visual representation 

of numbers, and its connectivity with the ventral visual 

pathway (Uddin, Supekar et al., 2010; Lerma-Usabiaga, 

Carreiras et al., 2018; Chen, Wassermann et al., 2019). The 

IPS is recognized as a critical hub for manipulating numerical 

quantity (Butterworth & Walsh, 2011; Piazza & Eger, 2016) and 

it plays a role in spatial attention and working memory 

(Szczepanski, Konen et al., 2010; Rottschy, Langner et al., 2012; 

Bray, Almas et al., 2015; Mackey & Curtis, 2017, Liu, Pinheiro- 

Chagas et al., 2021; Menon & Chang, 2021). This observation 

of IPS involvement reinforces the notion that understanding 

the neural processing of numbers and letters requires con

sidering both the ventral and dorsal visual pathways and their 

interconnections.

Notably, brain-wide ND-EN also revealed that the right 

DLPFC, BA44, premotor area, and insula contributed to whole- 

brain decoding of numbers and letters. This finding aligns 

with previous meta-analyses that have highlighted the 

involvement of the prefrontal cortex and insula in a wide 

range of number-related tasks (Arsalidou & Taylor, 2011, 

Sokolowski, Fias et al., 2017; Yeo, Wilkey et al., 2017). Addi

tionally, evidence from single-cell recordings in non-human 

primates also supports this finding, showing that prefrontal 

neurons are sensitive to numerical quantities (Nieder & 
Dehaene, 2009; Nieder & Miller, 2004; Viswanathan & Nieder, 

2013). This finding of the prefrontal cortex contributing to 

decoding numbers and letters indicates a higher level of se

mantic processing for symbolic numbers, compared to indi

vidual letters (as compared to words), which typically lack 

a similar depth of semantic representation, during the active 

task.

In contrast to the active task, there were no neural features 

that jointly distinguished between numbers and letters in the 

passive task. These findings suggest that neural differentia

tion between numbers and letters is facilitated by a dis

tributed network and is influenced by task engagement. 

Consistent with previous suggestions that attention may 

enhance category sensitivity (Culham, Cavanagh et al., 2001; 

Murray & Wojciulik, 2004; Vogel, Petersen et al., 2014; Chen, 

Wassermann et al., 2019; Pollack & Price, 2019), our findings 

indicate that task level engagement plays a key role in how the 

brain processes and differentiates the categories of visual 

symbols.

4.2. Neural representations in individual VTOC and 

parietal cortical regions

To complement and extend findings from the brain-wide 

neural decoding we utilized neural representational similar

ity (NRS) analysis to probe neural representations of numbers 

and letters within the VTOC and parietal cortical regions of 

interest (Fig. 3). NRS is particularly well suited for examining 

subtle yet significant differences in neural representations at 

a fine spatial scale in individual brain areas (Kriegeskorte, Mur 

et al., 2008; Diedrichsen & Kriegeskorte, 2017). We adopted 

both ROI-based and whole-brain searchlight approaches to 

examine the neural representational similarities in sub

regions of the VTOC, IPS, and across the whole brain.

Our NRS analysis revealed a significant overlap in neural 

representations between numbers and letters in several VTOC 

regions for both active and passive tasks. The overlap was 

more pronounced in subdivisions of the VTOC in the active 

task compared to the passive task. The subdivisions of the 

VTOC, which include the visual word form area (Dehaene & 
Cohen, 2011, Chen, Wassermann et al., 2019) and the puta

tive number form area (Grotheer, Herrmann et al., 2016; Yeo, 

Wilkey et al., 2017), have been previously implicated in cat

egory sensitivity for numbers and letters. However, Bayes 

Factor analysis revealed stronger evidence for shared neural 

representation between numbers and letter in subdivisions in 

bilateral fusiform gyrus than in the visual word form area and 
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number form area. Our findings suggest that, rather than 

being highly specific to one category, individual VTOC regions 

are similarly responsive to numbers and letters. This obser

vation complements our brain-wide decoding analysis using 

ND-EN, in which found that the preference for numbers dur

ing active tasks is not confined to isolated VTOC regions. 

Crucially, the visual word form area, putative number form 

area, and fusiform gyrus all emerged as part of a distributed 

system, rather than acting in isolation for differentiating be

tween numbers and letters. Additionally, analysis using 

VTOC, IPS, and angular gyrus ROIs based on the triple-code 

model of numerical cognition (Cohen & Dehaene, 1995, 

Piazza, Pinel et al., 2007; Yeo, Wilkey et al., 2017; Sokolowski, 

Matejko et al., 2023) did not reveal distinct category-specific 

patterns for numbers versus letters (see Supplementary 

Results, S3 Fig). These findings suggest that the neural repre

sentation of numbers and letters may be more widely dis

tributed and less constrained to regions proposed by the 

triple-code model.

In summary, our comprehensive neural pattern analysis 

reveals that individual VTOC subdivisions respond to both 

numbers and letters without a strong preference for one cat

egory over the other. In line with previous research and meta- 

analyses (Pollack & Price, 2019; Price & Ansari, 2011; Yeo, 

Wilkey et al., 2017; Grotheer, Jeska et al., 2018; Merkley, 

Conrad et al., 2019), our study highlights the importance of 

considering both brain-wide and region-specific approaches to 

better understand the neural representation of visual symbols.

4.3. Why category representation of numbers and letters 

differs at the brain-wide level

Although numbers and letters may appear visually similar as 

single characters, they serve distinct cognitive roles. Numbers 

inherently represent quantities, whereas individual letters do 

not carry intrinsic meaning by themselves. These funda

mental differences were evident in both behavioral perfor

mance and neural processing in the active task of our study. 

Behaviorally, participants demonstrated faster and more ac

curate responses when processing numbers as compared to 

letters. This suggests that numbers, likely due to their quan

titative and more semantic nature, may engage deeper 

encoding than letters. Numbers may activate semantic asso

ciations by representing specific quantities, whereas letters 

may require contextualization within words to gain meaning. 

The observed performance advantage of numbers compared 

to letters align with the level of processing principle that 

semantically encoded materials are processed more deeply 

and are better remembered than perceptually encoded ma

terials (Craik & Tulving, 1975; Neely, 2012).

From a neural perspective, our whole-brain ND-EN analysis 

revealed a distributed system encompassing prefrontal, pari

etal, and visual cortices that differentiated between numbers 

and letters during the active task. This finding indicates that 

when participants are actively engaged with the symbols, dif

ferent sets of brain regions are recruited to process their dis

tinct cognitive aspects: numbers being tied to quantities may 

activate a semantic network, and letters being part of a more 

abstract, less semantic symbolic system. The differential 

involvement of widespread brain regions suggests that the 

brain leverages different cognitive resources, such as more 

semantic processing for numbers, compared to letters, to 

facilitate efficient differentiation between the two categories.

In contrast, in the passive task, when participants were not 

explicitly directed to actively process the symbols, numbers 

and letters were processed indistinguishably at the neural 

level. This finding suggests that, in the absence of active 

engagement, the difference in semantic depth between 

numbers and letters may have been reduced, resulting in 

a more generalized and indistinguishable neural representa

tion of symbols. The lack of neural differentiation between 

numbers and letters in the passive task highlights the critical 

role of active task engagement in modulating how the brain 

processes and distinguishes between these two categories of 

visual symbols. Together, these findings suggest that task- 

level engagement may influence the brain’s ability to differ

entially process numbers and letters.

4.4. Convergent findings from probabilistic meta- 

analysis

The second aspect of our two-pronged approach involved 

quantitively rigorous meta-analyses to systematically eval

uate regional and distributed category sensitivity for numbers 

and letters. We utilized NeuroLang, which is a powerful tool 

for neuroimaging meta-analysis (Iovene & Wassermann, 

2020). This innovative meta-analytic approach provides 

probabilistic estimations of brain activation at voxel level 

given cognitive terms of interest, or vice versa, the probability 

of terms of interest associated with brain activations at voxel 

level. In addition, NeuroLang allows for conditional estima

tion that enables a more precise examination of the associa

tion between brain activations and cognitive terms.

Using NeuroLang (Iovene & Wassermann, 2020), we first 

conducted a series of forward meta-analysis, in which we 

sought to identify brain regions differentiating numbers and 

letters across 14,371 fMRI studies in the Neurosynth database 

(Yarkoni, Poldrack et al., 2011). These conditional meta- 

analyses identified brain regions associated with numbers 

but not letters, while ruling out studies in which both terms 

occurred. Our findings revealed that number processing pref

erentially activated bilateral parietal and prefrontal cortices 

and the insula, aligning with previous studies in numerical 

cognition (Piazza, Pinel et al., 2007; Rusconi, Bueti et al., 2011; 

Sokolowski, Fias et al., 2017). Notably, no VTOC region was 

found to be specifically associated with numbers as opposed to 

letters. The processing of letters was more consistently asso

ciated with canonical language-related areas in the left hemi

sphere, including the visual word form area and the pars 

opercularis subdivision of the inferior frontal gyrus (BA44).

We next conducted a series of reverse meta-analysis across 

14,371 fMRI studies and 89 cognitive atlas terms (Poldrack, 

Kittur et al., 2011) in Neurosynth database (Yarkoni, Poldrack 

et al., 2011). These reverse meta-analyses determined cogni

tive functions that were most likely associated with individual 

brain regions. We utilized these meta-analyses to confirm 

whether the VTOC regions identified from the NRS between 

numbers and letters in the current study, as well as visual 

word form and putative number form subdivisions, were 

responsive to a wide range of visual categories in previous 
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literature. Our findings indicated that these VTOC regions did 

not show a specific preference for numbers or letters, but 

rather were associated with various types of visual percep

tion, including face recognition, object recognition, and word 

recognition, and other cognitive processes such as navigation 

and reading. This suggests that the role of VTOC is not 

exclusive to numbers or letters but extends to a broader array 

of cognitive functions.

Taken together, our meta-analytic findings, along with 

results from multivariate ND-EN and NRS analysis, indicate 

that cognitive processing associated with numbers and letters 

is supported by multiple distributed brain regions. These re

sults suggest that the VTOC has a more generalized role in 

perceptual and cognitive processes and emphasize the 

importance of distributed neural systems in category- 

sensitive processing of numbers and letters.

4.5. Overlapping brain regions in number and letter 

processing: subregional and voxel-level differentiation

It is worth noting that our forward meta-analysis revealed 

that several brain regions, including the IPS and IFG, were 

associated with both numbers and letters, which may appear 

counterintuitive for meta-analyses involving the search of 

“digit but not letter” and “letter but not digit”. There are sev

eral plausible explanations for this finding.

First, different subregions within these broader areas were 

selectively involved in processing numbers and letters. For 

example, the IPS and IFG are large, functionally diverse regions 

that have been implicated in multiple cognitive tasks. Func

tional differentiation within these regions could allow for 

distinct subregions to specialize in either numbers or letters, 

even though both categories may recruit the same broader 

region. This functional specificity within subregions could 

explain the apparent overlap in brain areas supporting both 

types of symbolic processing. Second, within the same general 

brain region, voxel-level distinctions in neural activity could 

lead to different patterns of activation for numbers and letters. 

This voxel-level differentiation may contribute to category- 

sensitive neural representations, while allowing shared ana

tomical regions to support distinct cognitive processes.

In sum, while some brain areas may be involved in pro

cessing both numbers and letters, the selectivity for each cat

egory might emerge through finer-grained neural mechanisms 

at the subregional or voxel level. In the current study, multi

variate approaches enabled us to capture the nuanced ways in 

which the brain represents different categories of visual 

symbols.

4.6. Limitations and future directions

Several limitations of our study warrant consideration. One 

limitation of our study is that the active and passive tasks 

were conducted with different participant cohorts, precluding 

a direct within-subject comparison across task contexts. To 

address this issue, we conducted additional analyses in an 

age-matched subset of participants (see SI Results). The rep

lication of key findings suggests that our results are robust and 

not primarily driven by developmental differences. However, 

other individual differences, such as variations in math and 

reading abilities, could also influence neural representations 

of numbers and letters. While the active task cohort exhibited 

math and reading abilities within the normative range, similar 

data were not available for the passive task cohort. Although 

the passive cohort was not recruited from an atypically 

developing population, the lack of direct behavioral assess

ments introduces some uncertainty. Future studies should 

incorporate within-subject experimental designs to examine 

how neural representations of visual symbols change as 

a function of task engagement and attentional demands. 

Additionally, assessing individual differences in numerical 

and reading expertise could provide further insight into how 

learning history influences distributed neural coding of sym

bolic representations.

Another limitation is that the findings from our reverse 

meta-analysis may be influenced by biases in the existing 

literature. Specifically, more frequently studied topics — such 

as object and face recognition — are more likely to appear in 

large-scale meta-analyses than number and letter processing. 

As a result, our reverse meta-analysis findings do not entirely 

rule out the possibility of number- or letter-sensitive sub

regions in the VTOC. Instead, they highlight the general role of 

the VTOC in visual object processing and align with our NRS 

findings, which showed similar neural representations for 

numbers and letters in this region. The inconsistency in the 

reported location of the putative number form area across 

studies (Yeo, Wilkey et al., 2017) and the widely distributed 

nature of letter representations in the VTOC (Lochy, Jacques 

et al., 2018) raise questions about the existence of highly 

localized category-specific processing in these regions. Future 

meta-analyses that balance the representation of different 

visual categories in the literature may help determine 

whether specific subdivisions of the VTOC are preferentially 

involved in number or letter processing.

Beyond these methodological considerations, future work 

should explore the dynamic interactions among the dis

tributed neural systems supporting category-sensitive pro

cessing of numbers and letters. Functional and effective 

connectivity analyses could reveal how brain regions identi

fied in our study work in concert to differentiate between 

symbolic categories under varying task demands. Addition

ally, longitudinal studies tracking expertise development in 

numerical and literacy skills could provide valuable insights 

into how distributed neural representations emerge and 

evolve over time.

5. Conclusion

Our study utilized advanced brain-wide decoding techniques, 

yielding convergent evidence that underscores the distributed 

nature of category sensitivity for numbers and letters within the 

human brain. Importantly, our findings underscore that this 

sensitivity is not confined to isolated regions but involves a dis

tributed brain network whose engagement is modulated by task 

level engagement. Integrating results from multiple analysis 

approaches, varying task contexts, and meta-analyses of existing 

literature, our research provides a comprehensive view of neural 

processing of visual symbols. We identified that frontal and pa

rietal cortical regions, in conjunction with the VTOC and adjacent 
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lateral occipital cortex, play a pivotal role in the category- 

sensitive representation of these symbols. Notably, this joint 

decoding of numbers and letters across multiple brain regions 

was most pronounced in tasks requiring focused attention on 

these symbols. Our findings highlight context-sensitive and dy

namic nature of neural representations of numbers and letters, 

emphasizing the role of distributed brain areas in processing 

these fundamental cognitive elements. Future research should 

aim at unraveling the interactive dynamics of brain regions 

leading to the emergence of distributed neural representations.
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