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Mathematical cognition engages a distributed brain network, but the causal dynamics of information flow within
it, particularly how memory circuits interact with other brain regions across development, remain unknown. We
examined causal dynamic interactions in typically developing children and adolescents/young adults (AYA)
using fMRI during three tasks involving mental arithmetic and symbolic and non-symbolic number comparison.
Using multivariate dynamic state-space identification modeling, we found that causal dynamic interactions
differed between children and AYA across all three tasks, especially during arithmetic processing. The left medial
temporal lobe (MTL) served as a causal signaling hub in AYA across all three tasks, but not in children. The left
angular gyrus (AG) maintained consistent hub-like properties during arithmetic task across development.
Compared to AYA, children exhibited heightened causal interactions in both the MTL and AG. Moreover,
network hub properties of these regions correlated with individual’s mathematical achievement specifically
during arithmetic processing. Together, we found that the MTL transitioned from heightened, context-dependent,
interactions in childhood to a stable causal hub in adulthood, while the AG maintained as a hub during arith-
metic processing across development. This dissociation between memory systems, coupled with their task-
specific relationship to mathematical abilities, provides novel insights into how brain networks mature to sup-
port mathematical cognition.

1. Introduction fundamental to mathematical learning and development. The dynamic

interactions between memory systems and other cortical regions

Formal mathematical thinking involves multiple cognitive processes
that enable us to perform a wide range of tasks, from basic number
processing to complex problem solving (Menon, 2016; Menon and
Chang, 2021). These mathematical skills are essential for functioning in
daily life and professional and academic success (Ritchie and Bates,
2013). While considerable research has focused on the role of parietal
and frontal regions in mathematical cognition (Sokolowski, Fias et al.,
2017; Arsalidou, Pawliw-Levac et al., 2018; Hawes, Sokolowski et al.,
2019), emerging evidence suggests that memory systems also play a
crucial role in mathematical processing (Menon, 2016; Peters and
Smedt, 2017; Menon and Chang, 2021). Understanding how memory
systems interact with other brain regions during mathematical cognition
is particularly important because it may reveal how mathematical
knowledge is acquired, consolidated, and retrieved — processes that are
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involved in numerical cognition across development remain largely
unexplored, leaving a critical gap in our understanding of how the brain
supports mathematical learning and problem-solving. Investigating
these interactions could provide important insights into both typical and
atypical mathematical development, potentially informing educational
practices and interventions for mathematical learning difficulties.
Recent evidence has revealed the critical involvement of two key
memory-related brain systems in mathematical cognition: the medial
temporal lobe (MTL) and the angular gyrus (AG). The MTL, traditionally
associated with episodic and declarative memory, has emerged as a key
component in mathematical processing through converging evidence
from multiple methodological approaches and levels of analysis (Chang
et al., 2022; Cho et al., 2012; Qin et al., 2014). The AG has long been
shown associated with arithmetic processing, especially fact-retrieval
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based arithmetic problem solving (Grabner, Ansari et al., 2009; Grabner,
Ansari et al., 2013; Sokolowski, Matejko et al., 2023).

Functional brain imaging studies suggest that the MTL plays a crucial
but time-limited role in the early phases of mathematical knowledge
acquisition (Menon, 2016; Qin et al., 2014; Rivera et al., 2005),
particularly as children transition from procedural strategies to
memory-based retrieval strategies in mathematical problem-solving
(Cho et al., 2011, 2012). This developmental pattern suggests that a
dynamic involvement of the MTL across mathematical skill develop-
ment. However, the precise mechanisms by which MTL circuits mature
and how their role in mathematical cognition evolves across develop-
ment remain poorly understood.

The involvement of the MTL in mathematical processing extends to
fundamental levels of numerical cognition. The activation of this region
observed during the mere perception of arithmetic symbols, such as the
’+’ sign, suggests its role in building associations between mathematical
operators and problem-solving procedures (Mathieu et al., 2018). This
basic-level engagement is complemented by remarkable specificity at
the cellular level. Single-neuron recordings in humans have demon-
strated that individual MTL neurons can represent both symbolic and
non-symbolic numbers with high precision (Kutter et al., 2018) and even
discriminate between different arithmetic operations (Kutter et al.,
2022). These neurons carry sufficient information to allow statistical
classifiers to differentiate between addition and subtraction instructions
during mental calculation, suggesting that mathematical operations may
rely on neural mechanisms similar to those supporting other forms of
memory. While these findings provide crucial insights into the cellular
basis of mathematical processing in the MTL, they are inherently limited
by their focus on individual brain areas, leaving open questions about
how the MTL interacts with broader neural circuits during mathematical
cognition.

Beyond investigations of local representations, recent evidence
suggests the MTL may serve as a critical hub in the broader mathe-
matical processing network. An intracranial EEG study demonstrated
that the MTL functions as a crucial signaling hub during arithmetic
problem solving in adults, showing strong outgoing interactions with the
intraparietal sulcus (IPS) and ventral temporal occipital cortex (Das and
Menon, 2022). However, the generalizability of these findings is con-
strained by the limited spatial coverage and modest sample sizes
inherent in human neurophysiology studies. Moreover, how these causal
dynamics might change across diverse mathematical tasks and devel-
opment in neurotypical populations remains unknown. Understanding
such potential task specificity and developmental changes is crucial for
building a comprehensive model of how the MTL supports mathematical
learning and problem-solving across development.

The AG represents another critical memory-related region implicated
in mathematical cognition, particularly in the context of arithmetic fact
retrieval (Kadosh and Walsh, 2009). Within the parietal cortex, the AG
and IPS have been associated with distinct aspects of numerical cogni-
tion: while the IPS has been consistently implicated in the representation
and manipulation of quantity and procedural strategy use (Bueti and
Walsh, 2009; Menon et al., 2000; Piazza et al., 2007), the AG has been
specifically linked to retrieval of arithmetic facts (Grabner et al., 2009;
Sokolowski et al., 2023; Tschentscher and Hauk, 2014). However, the
precise role of the AG remains debated (Sokolowski et al., 2023). While
some studies suggest the AG works in concert with the MTL during
fact-retrieval-based arithmetic learning (Fias et al., 2021), others indi-
cate its role during mathematical tasks may be weaker than that of the
MTL (Bloechle et al., 2016; Das and Menon, 2022). This discrepancy
might reflect the involvement of the AG in broader cognitive functions
beyond mathematical processing. Consistent with this view, studies
have shown that the AG is involved in various aspects of semantic
processing and memory retrieval across multiple cognitive domains
(Binder et al., 2009; Kuhnke et al., 2023; Rockland and Graves, 2023),
suggesting it may support more general memory retrieval processes than
holding a specific role in mathematical cognition.

Developmental Cognitive Neuroscience 76 (2025) 101628

Considering the interactions of the AG within the larger mathemat-
ical processing network may provide critical insights into the specific
functional role of this region. While previous studies have examined the
activation patterns (Rosenberg-Lee et al., 2011) or functional connec-
tivity (Uddin et al., 2010) of the AG, few have investigated its causal
dynamics within the broader network of regions supporting mathe-
matical cognition. Understanding how the AG interacts with other brain
regions, particularly the MTL, during mathematical processing could
help clarify its specific contribution to mathematical cognition.

By comprehensively examining the dynamic circuits associated with
both MTL and AG memory systems in the context of a larger-scale math-
related brain network, the current study aimed to clarify our under-
standing of the roles of these memory systems in mathematical cogni-
tion. This approach allows us to directly compare the causal signaling
properties of these regions across different mathematical tasks and
developmental stages, potentially resolving some of the apparent con-
tradictions in the literature and providing a more nuanced under-
standing of how different memory systems support mathematical
cognition.

To address these gaps in our understanding, we employed a novel
multivariate dynamic state-space identification (MDSI) model to
examine causal interactions of the MTL and AG within a distributed
brain network consistently implicated in mathematical cognition
(Fig. 1). The MDSI model provides several key advantages over tradi-
tional connectivity analyses: it can estimate directed causal influences
between multiple brain regions simultaneously, accounts for the
regional differences in hemodynamic response function, and has been
rigorously validated using optogenetic stimulation and neuronal simu-
lations (Ryali et al., 2011). This approach allowed us to investigate brain
circuits during mathematical processing, overcoming limitations of
previous methods. We studied neurotypical children and ado-
lescents/young adults (AYA) using three fMRI tasks: arithmetic verifi-
cation, which involves math fact retrieval and computation; symbolic
number comparison, which requires processing of learned numerical
symbols; and non-symbolic number comparison, which engages basic
quantity processing. This comprehensive design allowed us to examine
how network dynamics differ across fundamental and complex mathe-
matical operations, while also investigating developmental changes in
these neural circuits.

Our research goals were fivefold. First, we aimed to examine whether
the MTL functions as a causal signaling hub during arithmetic, extending
previous iEEG findings to a larger sample and broader network. Second,
we investigated whether these dynamics extend to foundational number
processing tasks, examining how network interactions vary across
different mathematical contexts. Third, we studied developmental
changes in network dynamics by comparing school-aged children, who
are still acquiring mathematical skills, with AYA who have achieved
proficiency. Fourth, we directly compared causal signaling between the
MTL and AG across tasks and age groups to understand their differential
roles in mathematical cognition. Finally, we examined how the network
properties of these regions relate to individual differences in standard-
ized measures of mathematical abilities.

Based on previous findings using intracranial EEG recordings (Das
and Menon, 2022), we hypothesized that the MTL would serve as a
major causal signaling hub in the mathematical brain network, while the
AG might play a relatively limited role. We predicted that network in-
teractions would be modulated by both the type of mathematical
knowledge and experience, leading to differences across tasks and age
groups. These predictions were based on previous observations of
developmental differences in MTL engagement during mathematical
processing (Rivera et al., 2005; Peters and Smedt, 2018).

Our study provides novel insights into how memory circuits support
mathematical cognition, revealing dynamic and context-specific causal
interactions within the mathematical processing brain network. We
found that the MTL undergoes a significant developmental shift, tran-
sitioning from exhibiting heightened, context-dependent, causal
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Fig. 1. Schematic view of task and analysis pipeline. A. In the arithmetic task, participants were shown an addition equation and were instructed to decide whether the
equation was correct or not. Only single digits were used in the equations. B. In the symbolic number comparison task, participants saw a pair of single-digit Arabic
numerals and were asked to decide which side had the lager number. The range of numerals was one through nine. C. In the non-symbolic number comparison task,
participants saw a pair of dot arrays and decided which side had the larger quantity of dots. The range of dots was from one to nine. The size and total area of the dot
arrays were controlled to not correlate with the quantity of dots. D. Behavioral performance of children and adolescents and young adults (AYA) in arithmetic and
symbolic and non-symbolic number comparison tasks. Overall, participants were faster and more accurate in number comparison tasks and slower and less accurate
in the arithmetic task. AYA performed better than children in all tasks, with the most prominent group difference observed for the arithmetic task. E. An illustration of
the 23 regions of interest (ROIs) from a meta-analysis of previous studies on numerical cognition and memory (see details in Methods). F. The analysis pipeline of the
current study. For each subject in each task, the blood oxygen level dependent (BOLD) time series from each of the 23 ROIs and the task design vector were entered to
the multivariate dynamic state-space identification (MDSI) model to estimate the latent dynamic interaction among the 23 ROIs. the MDSI model generated a 23 by
23 causal dynamic matrix with each column indicating the outflow interaction from one ROI to all ROIs and each row indicating the inflow interaction from all ROIs
into one ROI. The net outflow degree (NOD) for each ROI was calculated as the difference between the sum of absolute outflow values of each ROI and the sum of
absolute inflow values of each ROI The ROIs with NOD values significantly above zero were defined as the outflow hubs. The outflow and inflow patterns in these
hubs and developmental differences were assessed by repeated measures analysis of variance (ANOVA) and paired t-tests. Logistic regression classifiers with Elastic
Net were used to determine whether the two age groups were decodable in each task and whether the three tasks were decodable in each age group. Betweenness
centrality analysis identified nodes in a network that participated in many shortest paths. Finally, canonical correlation analysis was used to measure the relationship
between the NOD of the causal signaling hubs and general math abilities. ***p < .005.

interactions in childhood to functioning as a stable causal signaling hub
in adulthood. In contrast, the left AG maintained a consistent role as a
causal signaling hub specifically during arithmetic processing across
development. Our findings suggest that mathematical processing is
supported by both specialized numerical systems and general-purpose
memory mechanisms, with their relative contributions and in-
teractions changing through development. This integrated view opens
new avenues for understanding mathematical learning difficulties and
developing targeted interventions and developing targeted in-
terventions that consider both the developmental stage and the specific
memory systems involved.

2. Methods
2.1. Participants

Forty-nine children (7-10 years; mean age = 8.2 + 0.7 years; 27
females) and 48 adolescents and young adults (AYA; 14-21 years; mean
age = 18.3 £ 1.6 years; 25 females) participated in the study. Data from
17 child participants and 2 AYA participants were excluded due to
excessive head motion during MRI scans (13 children and 2 AYA) or
incomplete fMRI task data (4 children). For determining the excessive
head motion, we used 3 mm maximum frame-to-frame displacement for
children and 1 mm for AYA. The final sample included 32 child partic-
ipants (7-9 years; mean age = 8.2 £ 0.5 years; 20 females) and 46 AYA
participants (14-21 years; mean age = 18.3 + 1.6 years; 23 females). All
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participants enrolled in the current study were right-handed. No par-
ticipants reported neurological, psychiatric, or vision disorders. All
adult participants provided written informed consent. For participants
under 18 years old, we obtained written informed consents from their
parents/legal guardians and assent from the participants. All partici-
pants received monetary compensation for their participation. The study
was conducted in accordance with the Declaration of Helsinki and was
approved by the local ethics committee of the institution.

2.2. Tasks

Participants completed three mathematical tasks during fMRI scan-
ning: an arithmetic task, a symbolic number comparison task, and a non-
symbolic number comparison task. To maximize data collection, and
minimize order effects while maintaining consistency across partici-
pants, all participants completed the tasks in the same sequence: arith-
metic task run 1, symbolic number comparison task, non-symbolic
number comparison task; an additional arithmetic task run 2 was then
acquired to ensure that all three tasks had similar number of trials.

2.2.1. Arithmetic task

In the arithmetic task, participants were shown series of addition
equations and were instructed to judge whether the equations were
correct or not by choosing between two buttons. Each participant
completed two runs of the task, with 52 trials in each run and each run
lasted 380 s. The task was programmed in Psychopy (Peirce et al., 2019)
with a jittered event-related design. In each trial, an equation was pre-
sented in a white font at the center of a 1024 x 768 black screen for 5 s
and followed by a black blank screen with a duration of either 0, 2.5, or
3.5 s. Participants were allowed to make a response within the 5 s time
window. Both operands and the answer in each equation were
single-digit Arabic numerals. Within each run, half of the trials were
simple problems with one operand being one and the other half were
complex problems with both operands greater than one. Half of the trials
were presented with the larger operand as the first and the other half
with the smaller operand as the first. Moreover, half of the trials were
correct equations and the other half were incorrect equations. Finally,
the order of the equations was pseudorandomized with each run.

2.2.2. Symbolic number comparison task and non-symbolic number
comparison task

In the symbolic number comparison task, participants saw pairs of
single-digit Arabic numerals presented side by side and were instructed
to pick the side with the larger number by button pressing. Similarly, in
the non-symbolic number comparison task, participants viewed pairs of
dot arrays presented side by side and needed to judge which side con-
tained more dots by button pressing. The tasks were also programmed in
Psychopy (Peirce et al., 2019) with a jittered event-related design. Each
comparison task contained one run with 64 trials. In each stimulus, the
left number/dot array was always located 40 % away from the left side
of the screen and the right number/array was always located 40 % away
from the right side. In the non-symbolic number comparison task, the
dot size and the total area of the dot array were controlled so neither of
the two perceptual dimensions was correlated with the quantity of the
dots. The ratio between two numbers or dot arrays varied between
1.125,1.17,1.33, 2, 2.25, 2.67, 3.5, 6 across all trials. Each trial started
with a green fixation (a “*”) for 0.5 s, followed by two numbers or two
dot arrays were shown in green color on a 1024 x 768 black screen for
1 s a black blank screen for 1.5 s, and a jitter screen between 1.7 and
3.8 s. Each task lasted for 362 s. In each task, there were 16 unique pairs
of quantities and each of them was repeated 4 times, resulting in 64
trials in total.

2.3. MRI data acquisition and preprocessing

Task-based functional MRI data were acquired on a 3 T GE scanner
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using a T2* weighted gradient echo-spiral in-out pulse sequence
(TR=2000 msec, TE=30 msec, FOV = 220 mmz, matrix size = 64 x 64,
pixel size = 3.4375 mm, slice thickness = 4 mm, flip angle = 80 degree).
A T1- weighted, high-resolution structural image was acquired for the
anatomical co-registration of functional images (slice thickness 1 mm;
in-plane resolution: 256 x 256, voxel size = 1.5 x 0.9 x 1.1 rnrn3). All
functional images were preprocessed using SPM12 (Ashburner et al.,
2020). The first five volumes of each time-series were discarded to allow
for signal equilibration. The preprocessing pipeline included realign-
ment, slice-timing correction, co-registration to subjects’ structural T1
images and normalization to a 2 mm MNI152 template, and smoothing
using a 6 mm full-width half-maximum Gaussian kernel to decrease
spatial noise. The proportion of volumes with scan-to-scan displacement
higher than 0.5 voxel did not exceed 10 % across tasks. Movement did
not exceed 3mm in any rotational and translational axes. Mean
scan-to-scan displacement did not exceed 0.5 mm (See SI1 Table for
detailed descriptive statistics). To account for potential influences of
unmatched head motion between groups, head motion parameters were
included as covariates of no interest in fMRI general linear model
analysis.

To rule out data quality degradation as a confound, we examined
head motion parameters between children and AYA groups across tasks.
While children exhibited higher head motion than AYA, motion did not
differ across tasks within either group, with no group x task interaction
(see Supplementary Results). We also calculated temporal signal-to-
noise ratio (tSNR) (Kriiger and Glover, 2001) to assess potential
age-related data quality differences. Analysis revealed minimal impact
of tSNR on our main findings (see Supplementary Materials); conse-
quently, tSNR was not included as a covariate in main analyses

2.4. ROI selection

Our math-related brain network included 11 bilateral brain regions
consistently activated during numerical cognition and learning in chil-
dren (Butterworth and Walsh, 2011; De Smedt et al., 2011; Cho et al.,
2012; Qin et al., 2014; Hannagan et al., 2015; Nieder, 2016; Piazza and
Eger, 2016; Arsalidou et al., 2017; Peters and Smedt, 2017), which
included 9 bilateral cortical regions identified using Neurosynth
(Yarkoni, Poldrack et al, 2011)-based meta-analysis, using term
“arithmetic.” The cortical regions included: bilateral intraparietal sul-
cus, superior parietal lobule, anterior insula, middle frontal gyrus,
inferior frontal gyrus, dorsal medial prefrontal cortex, frontal eye field,
inferior temporal gyrus, and lateral occipital cortex. In addition, bilat-
eral MTL and basal ganglia regions, shown to be important for learning
math facts (De Smedt et al., 2011; Cho et al., 2012; Qin et al., 2014;
Peters and Smedt, 2017) and procedural knowledge in arithmetic (Geary
and Hoard, 2001; Rivera et al., 2005; Supekar et al., 2013) in children,
were included. The hippocampus and the caudate, the primary region of
the MTL and the basal ganglia (Packard and Knowlton, 2002), respec-
tively, were identified from Neuroquery (Dockes et al., 2020)-based
meta-analysis, using terms “declarative memory” and “procedural
memory.” In addition to these 22 math-related brain regions, we
included the left angular gyrus from the most recent meta-analytic work
by Sokolowski et al. (2023) to consider its prominent role in number and
arithmetic processing.

2.5. MDSI model for estimating causal interactions from fMRI data

MDSI estimates context-dependent causal interactions between
multiple brain regions in latent quasi-neuronal states while accounting
for variations in hemodynamic responses in these regions. MDSI has
been validated using extensive simulations (Ryali et al., 2011; Ryali
et al., 2016) and has been successfully applied to our previous studies
(Cai et al., 2021; Cho et al., 2012). MDSI models the multivariate fMRI
time series by the following state-space equations:
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s(t) = iv,-(t)c,»s(t— D+ w(t) 1)
j=1

Xn(t) = [Sm(t) Sm(t—1)..8p(t—L+1)] 2)

Ym(t) = bn®@xm () + en(t) 3)

In Eq. (1), s(t) is a M x 1 vector of latent quasi-neuronal signals at
time t of M regions, C; is an M x M connection matrix ensued by
modulatory input v;(t), J is the number of modulatory inputs. The non-
diagonal elements of C; represent the coupling of brain regions in the
presence of modulatory input vj(t). Cj(m,n) denotes the strength of
causal connection from n-th region to m-th region for j-th type stimulus.
Therefore, latent signals s(t) in M regions at time t is a bilinear function
of modulatory inputs v;(t), corresponding to deviant or standard stim-
ulus, and its previous state s(t-1). w(t) is an M x 1 state noise vector
whose distribution is assumed to be Gaussian distributed with covari-
ance matrix Q(w(t) ~ N(0, Q)). Additionally, state noise vector at time
instances 1,2,....,Tw(1), w(2)...w(T)) are assumed to be identical and
independently distributed (iid). Eq. (1) represents the time evolution of
latent signals in M brain regions. More specifically, the latent signals at
time ¢, s(t), is expressed as a linear combination of latent signals at time
t-1, external stimulus at time t (u(t)), bilinear combination of modula-
tory inputs v;(t),j = 1,2..J and its previous state, and state noise w(t).
The latent dynamics modeled in Eq. (1) gives rise to observed fMRI time
series represented by Eqs. (2) and (3).

We model the fMRI time series in region “m” as a linear convolution
of hemodynamic response function (HRF) and latent signal sp,(t) in that
region. To represent this linear convolution model as an inner product of
two vectors, the past L values of s,,(t) are stored as a vector. xp,(t) in Eq.
(2) represents an L x 1 vector with L past values of latent signal at m-th
region.

In Eq. (3), ym(t) is the observed BOLD signal at t of m-th region. ® is a
p x L matrix whose rows contain bases for HRF. b, is a 1 x p coefficient
vector representing the weights for each basis function in explaining the
observed BOLD signal yn(t). Therefore, the HRF in m-th region is rep-
resented by the product b,®. The BOLD response in this region is
obtained by convolving HRF (b, ®) with the L past values of the region’s
latent signal (xn,(t)) and is represented mathematically by the vector
inner product b, ®xn(t). Uncorrelated observation noise en(t) with
zero mean and variance o2, is then added to generate the observed
signal ym(t). en(t) is also assumed to be uncorrelated with w(r), at all ¢
and 7. Eq. (3) represents the linear convolution between the embedded
latent signal x,,(t) and the basis vectors for HRF. Here, we use the ca-
nonical HRF and its time derivative as bases, as is common in most fMRI
studies.

Egs. (1)-(3) together represent a state-space model for estimating the
causal interactions in latent signals based on observed multivariate fMRI
time series. Furthermore, the MDSI model also takes into account vari-
ations in HRF as well as the influences of modulatory and external
stimuli in estimating causal interactions between the brain regions.

Estimating causal interactions between M regions specified in the
model is equivalent to estimating the parameters C;,j = 1,2..J. In order
to estimate C;’s, the other unknown parameters Q, {b,, }»_, and {ofn}le
and the latent signal {s(t)}"_, based on the observations {y*, (t) }Irffl =17
=1,2..T, where T is the total number of time samples and S is number of
subjects, needs to be estimated. We use a variational Bayes approach
(VB) for estimating the posterior probabilities of the unknown param-
eters of the MDSI model given fMRI time series observations for S
number of subjects. The statistical significance of the parameters is
assessed by examining the posterior probabilities of the parameters C;, j
=1,2..J at a given level of significance.

t
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2.6. State-space analysis of dynamic causal interactions

To prepare data for MDSI analysis, the fMRI time-series from each
ROI and participant were first linearly de-trended and then normalized
by its standard deviation. For all ROIs, time-series were extracted using
the MarsBar toolbox in SPM12. Spherical ROIs were defined as the sets
of voxels contained in 6 mm (diameter) spheres centered on the MNI
coordinates of each ROL. MDSI was applied to estimate directed causal
interactions among 23 nodes separately in the three tasks (non-sym-
bolic, symbolic, arithmetic) and two groups (children, AYA).

To characterize the causal network interactions generated by MDSI,
we first evaluated net causal influences of each node and determined
causal outflow from each node in the three tasks and two groups. Spe-
cifically, we computed the outflow degree of each node in each task and
participant by subtracting averaged inflow weights (all the input con-
nections to a node from all other nodes) from averaged outflow weights
(all the output connections from a node to all other nodes). The outflow
degree was referred as the net outflow degree (NOD) of each node.

2.7. Graph-theoretical analysis

Additionally, we computed betweenness centrality of each node in
each task and participant. Betweenness centrality measures how often a
node lies on the shortest path between all pairs of nodes in a network.
While a node with high degree has many direction connections, a node
with high betweenness centrality acts as a bridge between other nodes in
the network (Rubinov and Sporns, 2010).

2.8. Multivariate classification analysis of dynamic causal interactions
between groups and between tasks

To determine whether causal networks associated with the three
tasks differ between children and AYA during each task, we used the
causal network patterns in the two groups. The dynamic causal inter-
action patterns — MDSI weights of 253 pairs of anatomical regions — were
used as the input (features) to a linear logistic regression classifier with
Elastic Net. The Elastic Net combined feature elimination from Lasso and
feature coefficient reduction from Ridge, and as a result, features with
low importance were assigned zero weights. K-fold cross-validation (K =
4) was used to measure the performance of the classifier in dis-
tinguishing children and AYA. In k-fold, one-fold is used for testing the
classifier that is trained using the remaining k-1 folds. This process is
repeated K times. These analyses were performed using the scikit-learn
package (https://scikit-learn.org/), which is a python-based package for
machine learning. Permutation tests (5000 permutations of class labels)
were conducted to arrive at p-values associated with classification
accuracy.

To examine whether causal networks associated with the three tasks
differ in each group, we applied the aforementioned analysis to the
MDSI estimated causal networks during the arithmetic, symbolic, and
non-symbolic tasks for each group.

2.9. Statistical analysis

To examine how task performance was modulated by group and task,
we performed a two-way mixed measures analysis of variance (ANOVA)
on accuracy and latency separately, with the between-subject factor
Group (Children vs AYA) and within-subject factor Task (Non-symbolic
vs Symbolic vs Arithmetic). Upon significant Group by Task interaction,
post-hoc paired t-tests and two-sample t-tests were performed.

To identify causal outflow and inflow hubs, we performed a one-
sample t-test on causal outflow for each node and results were FDR-
corrected. In order to examine how outflow and inflow hubs were
modulated by group and task, for each hub region we performed a two-
way mixed measures ANOVA with the between-subject factor Group and
within-subject factor Task. Upon significant Group by Task interaction,


https://scikit-learn.org/

R. Liu et al.

post-hoc paired t-tests and two-sample t-tests were performed.

To examine how betweenness centrality was modulated by group
and task, for each hub region we performed a two-way mixed measures
ANOVA with the between-subject factor Group and within-subject factor
Task. Upon significant Group by Task interaction, post-hoc paired t-tests
and two-sample t-tests were performed.

2.10. Canonical correlation analysis (CCA)

We used canonical correlation to examine the relation between the
NOD of the causal signaling hubs and children and AYA’s math skills.
For the math skills, the participants were tested with the Woodcock-
Johnson III Test of Cognitive Abilities (WJ III; Schrank, 2011). Specif-
ically, we used the Calculation, Math Fluency, and Applied Problems
subtests to test the arithmetic and math problem solving abilities. In the
CCA, the NOD of the causal signaling hubs was entered as one set of
variables and the three WJ III math subtest scores were entered as the
second set of variables. The CCA tries to find the optimal linear com-
bination (variate) of the two sets of variables that can maximize the
correlation between the two variables. We set the CCA to estimate two
variates for each variable. After the CCA converged, we calculated the
Pearson correlation between the first variate of the NOD and the first
variate of the math scores to get the CCA correlation coefficients. The
CCA was first implemented in each age group and each task respectively.
We then tested the slopes of the correlations. Specifically, we used the
formula below to test the slope difference between children and AYA in
each task respectively.

t:M 4

\/SE? + SEZ

In this formula, b; and b, denote the slope of each correlation. SE;
and SE, denote the standard error of the slopes. The degree of freedom
was the total sample (n = 78) minus 4 (two for the slopes and two for the
intercepts), which is 74. We also combined the two age groups and
tested the CCA between the NOD of the left MTL and left AG and math
scores in all participants.

3. Results
3.1. Behavior

We examined whether children and adolescents and young adults
(AYA) performed at different levels on arithmetic and symbolic and non-
symbolic number comparison tasks (Fig. 1A-C). In a 2 (age: children,
AYA) x 3 (task: arithmetic, symbolic number comparison, non-symbolic
number comparison) analysis of variance (ANOVA), the main effect of
age and task as well as interaction between age and task were significant
for both accuracy and response times (RT) (Fig. 1D). Specifically, chil-
dren were less accurate and slower than AYA across all tasks (accuracy: F
(1,76) =111.5, p <.001; RT: F(1,76) =71.91, p < .001). Both age
groups were most accurate in the symbolic number comparison task (F
(2152) =17.94, p < .001) and the slowest in the arithmetic task (F
(2152) = 73.76, p < .001). The difference in accuracy or RT between
children and AYA was greatest for the arithmetic task (accuracy: F
(2152) = 21.44, p < .001; RT: F(2152) = 31.15, p < .001). These find-
ings indicate that AYA performed better than children on all tasks, with
the most prominent improvements on arithmetic problem solving.

3.2. Developmental changes in causal network interactions in arithmetic
and number comparison tasks

To address our main question about whether causal network in-
teractions during math problem solving change across development, we
examined whether children and AYA showed different dynamic inter-
action patterns in the brain network consisted of 23 regions of interest
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(ROIs) obtained from Neurosynth-based meta-analysis and previous
empirical work (De Smedt et al., 2011, Cho et al., 2012, Qin et al., 2014,
Arsalidou et al., 2017, Peters and Smedt, 2017, Supekar et al., 2021,
Chang et al., 2022, Sokolowski et al., 2023) (see Methods and Fig. 1E).
We applied a Logistic Regression classifier with the Elastic Net regula-
rization in the multivariate dynamic state-space identification (MDSI)
modeling to classify children and AYA in arithmetic, symbolic number
comparison, and non-symbolic number comparison tasks (Fig. 1F;
Fig. 2A-B, E-F, and I-J). We found that the classification accuracy was
the highest in the arithmetic task (decoding accuracy = 76.97 %, per-
mutation p < .001; Fig. 2C), followed by the non-symbolic number
comparison task (decoding accuracy = 62.96 %, permutation p < .001;
Fig. 2K) and the symbolic number comparison task (decoding accuracy =
56.45 %, permutation p < .001; Fig. 2G). Children and AYA differed
more in the dynamic interaction in the math-related brain network for
more complex task (arithmetic) and were less distinguishable for
simpler tasks (number comparison).

3.3. Causal network dynamics differ between math tasks

We applied Logistic Regression classifier with Elastic Net to examine
whether the causal dynamics among the math brain network differed
between the three tasks in children and AYA respectively. We found
successful between task decoding in children (decoding accuracy =
38.54 %, permutation p < .001; chance level is 33 %) and AYA (decoding
accuracy = 46.34 %, permutation p < .001; chance level is 33 %), sug-
gesting that causal network dynamics differed between math tasks in
both children and AYA. The decoding accuracy seems lower in children
than AYA, which might suggest that the network dynamics are less
distinguishable when the math skills are premature.

3.4. Causal signaling hubs in the arithmetic task

Our next goal was to examine whether the MTL or any other brain
region plays the role of causal signaling hub during arithmetic task
performance. Specifically, we measured the causal outflow of each brain
region in the MDSI model by estimating the sum of absolute values of
causal interactions from the brain region of interest to all other brain
regions. Similarly, the causal inflow of each brain region in the model
was measured as the sum of absolute values of causal interactions from
all other brain regions into the brain region of interest. The net outflow
degree (NOD) was estimated as the causal outflow minus the causal
inflow. Positive values indicated more outgoing (than incoming) in-
teractions and negative values indicated more incoming (than outgoing)
interactions. Here, we defined brain regions with significantly higher
than zero NOD as causal signaling hubs.

A repeated measures ANOVA of age (children, AYA) x ROIs showed a
significant main effect of ROI on the NOD during the arithmetic task (F
(22,1672) = 1.93, p = .006; Fig. 3A), which suggests the outflow-inflow
profile was different across all regions. No significant main effect of age
or age by ROI interaction was observed (F(1,76) < .001, p > .99).

3.4.1. The role of MTL as a causal signaling hub

We next examined the NOD of the MTL in each age group (children
and AYA). In children, planned t-test yielded no significant NOD in the
left or right MTL during the arithmetic task (ts < 1.4, ps >.16; Fig. 3A,
left panel). In AYA, we found that the left MTL had positive NOD in the
math-related brain network during the arithmetic task (¢(45) = 3.12,
p =.003; Fig. 3A, middle panel). Additional analysis of the NOD in the
right MTL was not significantly greater than zero (t(45)=1.63,
p =.10). A direct comparison of the NOD between children and AYA
showed a significant age difference in the left MTL (¢(1,76) = 3.10,
p =.003; Fig. 3A, right panel). These findings suggest developmental
changes in the causal dynamic interactions of the left MTL from
receiving more interaction in childhood to causal signaling other regions
in the math-related brain network in adolescence and young adulthood.
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Fig. 2. Dynamic interactions among the regions in the math brain network in differed between children (left column) and AYA (right column). In each heatmap, each column
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on the top and right side of each heat map show the sum of each column and row. Logistic regression classifications with Elastic Net regularization indicated
successful decoding between children and AYA in all tasks. A-B. The MDSI causal dynamic matrix in (A) children and (B) AYA in the arithmetic task. C. The Logistic
regression classification accuracy in the arithmetic task. D. The lower triangle of the MDSI causal dynamic matrix has higher summed value than the upper triangle in
both children (left panel) and AYA (right panel) in the arithmetic task, indicating asymmetric outgoing and incoming causal interactions. E-F. The MDSI causal
dynamic matrix in (E) children and (F) AYA in the symbolic number comparison task. G. The Logistic regression classification accuracy in the symbolic number
comparison task. H. The lower triangle of the MDSI causal dynamic matrix has higher summed value than the upper triangle in both children (left panel) and AYA
(right panel) in the symbolic number comparison task. I-J. The MDSI causal dynamic matrix in (I) children and (J) AYA in the non-symbolic number comparison task.
K. The Logistic regression classification accuracy in the non-symbolic number comparison task. L. The lower triangle of the MDSI causal dynamic matrix has higher

summed value than the upper triangle in both children (left panel) and AYA (right panel) in the non-symbolic number comparison task. ***p < .005.

3.4.2. The role of AG and other math-related brain regions as causal
signaling hubs

While the MTL was found to be a causal signaling hub in AYA, the left
AG was a causal signaling hub in both children (£(31) = 2.38, p = .02;
Fig. 3A, left panel) and AYA (t(45) = 4.06, p < .001; Fig. 3A, middle
panel). The NOD in the left AG was not significantly different between
children and AYA (t(1,76) = -0.71, p = 0.48; Fig. 3A, right panel). No
other brain regions were identified as causal signaling hub in either
group (ts<1.63, FDR corrected ps >.32).

These findings suggest that the MTL emerged as a causal signaling
hub during arithmetic task performance later in development, whereas
the left AG was a stable causal signaling hub across developmental
stages.

3.5. Causal signaling hubs in the symbolic number comparison task

Our next goal was to extend the examination of the causal signaling
hubs to more fundamental number comparison tasks. We first examined
the symbolic number comparison task. In a repeated measures 2 (age:
children, AYA) x 23 (23 ROIs) ANOVA, the main effect of ROI on the
NOD was significant (F(22, 1672) = 1.65, p = .03; Fig. 3B). No signifi-
cant main effect of age or age by ROI interaction was observed (Fs <
1.33, ps >.14).

3.5.1. The role of MTL as a causal signaling hub

We next examined the NOD of the MTL in each age group and
assessed developmental difference. In children, neither the left or right
MTL showed the NOD significantly greater than zero during the sym-
bolic number comparison task, though the MTL had positive NOD (ts <
1.50, ps >.30; Fig. 3B, left panel). In AYA, the left MTL was the causal
signaling hub (t(45) = 3.44, p = .001; Fig. 3B, middle panel). The NOD
in the right MTL, while positive, was not greater than zero (t(45) = 1.71,
p =.09). No significant difference between children and AYA was
observed in the NOD of either the left or right MTL (ts < 1.14, ps >.25;
Fig. 3B, right panel). These findings suggest a weaker developmental
difference in the MTL as the causal signaling hub for the symbolic
number comparison, compared to the arithmetic task, which showed a
significant developmental difference.

3.5.2. The role of AG and other math-related brain regions as causal
signaling hubs

The AG was not identified as causal signaling hub in either group (ps
>.30). In children, several other brain regions had positive NOD,
including the right frontal eye field, right dorsomedial prefrontal cortex,
left lateral occipital cortex, and left inferior temporal gyrus. However,
the NOD in these regions were not significantly greater than zero (ts<
2.01, FDR corrected ps>.34). In AYA, we did not find any other causal
signaling hub, beyond the left MTL, with significantly greater than zero
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Fig. 3. Net outflow and inflow degree in children and AYA in arithmetic and symbolic and non-symbolic number comparison tasks. A. Net outflow and inflow pattern
in children and AYA in the arithmetic task. The left AG had significant net outflow degree (NOD) than other brain regions in children (left panel). In AYA, the left MTL
and AG were identified as causal signaling hubs (middle panel). Significant age difference was observed in the left MTL (right panel). B. Net outflow and inflow pattern
in children and AYA in the symbolic number comparison task. In children, the outflow causal signaling was distributed across regions in the right MTL, right DMPFC,
right FEF, left ITG, and left LOC (left panel). However, none of these regions appeared to have NOD significantly higher than zero. The left MTL played a role as an
outflow hub in AYA (middle panel). No main effect of age or age by ROI interaction was found (right panel). C. Net outflow and inflow pattern in children and AYA in
the non-symbolic number comparison task. In children, the left FEF, left MTL, and right IFG had relatively greater outflow causal signaling than other regions (left
panel). However, none of these regions appeared to have NOD significantly higher than zero. The bilateral MTL were the outflow hubs in AYA (middle panel). No main
effect of age or age by ROl interaction was found (right panel). Note: In the left and middle column, bars pointing outside the ring represent outflow and bars pointing
inside the ring represent inflow. In the right column, bars pointing outside the ring represent network outflow greater in AYA than children and bars pointing inside
the ring represent network outflow greater in children than AYA. AG: angular gyrus. DMPFC: dorsomedial prefrontal cortex. FEF: frontal eye field. IFG: inferior
frontal gyrus. ITG: inferior temporal gyrus. LOC: lateral occipital cortex. MTL: medial temporal lobe. *p < .05, **p < .01.

NOD (ts < 1.70, FDR corrected ps >.43).

These findings suggest that the MTL was as a causal signaling hub
during symbolic number comparison later in development. However,
direct comparison between age groups indicated that developmental
changes in the MTL was not significant.

3.6. Causal signaling hubs in the non-symbolic number comparison task

Finally, we investigated the causal signaling hubs in the non-
symbolic number comparison task. The 2 (age: children, AYA) x 23
(23 ROIs) repeated measures ANOVA yielded a main effect of ROI on the
weighted causal outflow (F(22,1672) = 1.94, p =.005; Fig. 3C). No
significant main effect of age or age by ROl interaction was observed (Fs
< 0.85, ps >.66).

3.6.1. The role of MTL as a causal signaling hub

showed a significant developmental difference.

We next examined the NOD of the MTL in each age group and
assessed developmental difference. In children, the NOD in the left MTL,
while positive, was not significantly higher than zero (¢(31) =1.39,
p =.17). The NOD in the right MTL was also not significantly higher
than zero (t(31) = -.65, p = .51). In AYA, bilateral MTL were found as
the causal signaling hubs (left MTL: t(45) = 3.37, p = .002; right MTL: t
(45) = 2.21, p = .03; Fig. 3C, middle panel). The NOD in bilateral MTL
was not significantly different between children and AYA (ts <1.89, ps
>.06; Fig. 3C, right panel). These findings suggest a weaker develop-
mental difference in the MTL as the causal signaling hub for the non-
symbolic number comparison, compared to the arithmetic task, which
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3.6.2. The role of AG and other math-related brain regions as causal
signaling hubs

The AG was not identified as causal signaling hub in either group (ps
>.40) in the non-symbolic number comparison task. No other brain
regions had significantly higher than zero NOD in either children or AYA
(ts< 2.23, FDR corrected ps>.19). No significant difference between
groups was observed for the NOD in the rest of the ROIs (ts<2.07, FDR
corrected ps>.73).

Together, our causal signaling hub analysis shows that the left MTL
was a stable causal signaling hub in AYA across arithmetic and symbolic
and non-symbolic number comparison tasks. The right MTL was iden-
tified as the causal signaling hub in AYA only in the non-symbolic
number comparison task. In children, the NOD in the bilateral MTL
was not significantly higher than zero in any of the tasks. The devel-
opmental difference in the NOD of the MTL was significant in the
arithmetic task but not in the symbolic or non-symbolic number com-
parison task, which suggests the differential role of the MTL across
development was context dependent. Moreover, we observed that the
left AG was a major causal signaling hub in the arithmetic task but not in
symbolic or non-symbolic comparison tasks in both children and AYA,
which is consistent with findings of the involvement of AG in arithmetic
tasks (Grabner et al., 2009; Sokolowski et al., 2023).

3.7. Outflow and inflow in the left MTL during arithmetic and number
comparison tasks in children and AYA

Our next series of analyses examined the level of outflow and inflow
for each task in each age group in the left MTL, which was consistently
shown as the causal signaling hub across arithmetic and number com-
parison tasks in AYA. We calculated the outgoing and incoming dynamic
interaction in the MTL and examined whether the outflow/inflow
pattern differed between age groups in the three tasks (Figs. 4 and 5).
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3.7.1. Outflow in the left MTL

We found a significant age difference between children and AYA
across the tasks for the outflow in the left MTL (F(1,76) = 7.28,
p = .008). No significant main effect of task (F(2152) = .37, p > .05) or
task by age interaction (F(2152) = .38, p > .05) was found. Follow-up t-
test showed a significant developmental difference in the arithmetic
verification task (t(1,76) = 2.53, p = .01). Children had higher outflow
in the left MTL than AYA in the arithmetic task (Fig. 4D). The devel-
opmental differences in the symbolic and non-symbolic number com-
parison tasks did not reach significance (ts <1.65, ps >.10).

3.7.2. Inflow in the left MTL

For the inflow in the left MTL, a significant main effect of age was
observed (F(1,76) = 22.79, p < .001). We also found an age by task
interaction (F(2152) = 3.97, p = .02). The age difference was larger in
the arithmetic verification task than in symbolic or non-symbolic
number comparison tasks. No significant main effect of task (F(2.152)
=1.13, p > .05) was observed. Follow-up t-tests showed significant
developmental differences in all three tasks (ts > 2.13, ps <.04). Chil-
dren had higher inflow than AYA in the left MTL in all three tasks
(Fig. 5D).

Combining with the finding that the NOD (i.e. outflow — inflow) in
the left MTL was lower in children than in AYA, especially in the
arithmetic task, these results suggest that both outflow and inflow are
enhanced in children, leading to diminished net outflow in the left MTL.

3.8. Outflow and inflow in the left AG during arithmetic and number
comparison tasks in children and AYA

As the left AG was identified as the outflow hub in the arithmetic task
in both age groups, we examined the levels of outflow and inflow in the
left AG in both age groups in each task.
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Fig. 4. Outflow causal signaling from all the regions of interest into the left MTL (purple) and left AG (mint green). A-C. The outflow causal signaling in the left MTL
and left AG in (A) arithmetic, (B) symbolic number comparison, and (C) non-symbolic number comparison tasks in children. D. Children had significantly higher
outflow than AYA in the left MTL in the arithmetic task. E-G. The outflow causal signaling in the left MTL and left AG in (E) arithmetic, (F) symbolic number
comparison, and (G) non-symbolic number comparison tasks in AYA. H. Children had significantly higher outflow than AYA in the symbolic number comparison task.

*p < .05, **p < .01, n.s., not significant, p > .05.
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left AG in (A) arithmetic, (B) symbolic number comparison, and (C) non-symbolic number comparison tasks in children. D. On average, children had higher inflow in
the left MTL than AYA across all three tasks. E-G. The inflow causal signaling in in the left MTL and left AG in (E) arithmetic, (F) symbolic number comparison, and
(G) non-symbolic number comparison tasks in AYA. H. On average, children had higher inflow than AYA in the symbolic number comparison task. *p < .05,

**p < .01, ***p < .005, n.s., not significant, p > .05.

3.8.1. Outflow in the left AG

Similar to the left MTL, we found a significant age difference be-
tween children and AYA across all tasks for the outflow in the left AG (F
(1,76) = 5.60, p = .02; Fig. 4H). No significant main effect of task (F
(2152) =1.53, p > .05) or task by age interaction (F(2152)= 1.40,
p > .05) was found. Follow-up t-tests showed a significant develop-
mental difference in the symbolic number comparison task (t(1,76)
=275, p=.007). No significant developmental difference was
observed in the arithmetic or non-symbolic number comparison tasks (t
(1,76) = .60, p > .05).

3.8.2. Inflow in the left AG

For the inflow in the left AG, we found a significant main effect of
task (F(2152) = 7.72, p < .005; Fig. 5H). The inflow in the left AG was
lower in the arithmetic task than in number comparison tasks. No sig-
nificant age effect (F(1,76) = 3.47, p = .07) or age by task interaction
was found (F(2152) = 1.58, p > .05). Follow-up t-tests indicated a sig-
nificant developmental difference in the symbolic number comparison
task (t(1,76) = 2.11, p = .04). No significant developmental difference
was observed in the non-symbolic number comparison task (t(1,76)
= .04, p > .05) or the arithmetic task (¢(1,76) = 1.85, p = .07).

These findings suggest enhanced outflow and inflow in the left AG in
children than AYA, especially for the symbolic number comparison task.

3.9. Comparison of causal signaling of MTL and AG

As described above, the left MTL was a stable causal signaling hub in
AYA in all three tasks (Fig. 3A-C, middle panel) and the left AG was a
causal signaling hub in both children and AYA in the arithmetic verifi-
cation task (Fig. 3A, left and middle panel). For the left MTL, children
and AYA had different NOD in the arithmetic task (Fig. 3A, right panel)
but not in the other two tasks. For the left AG, there was no significant
difference between children and AYA regarding the NOD across the
three tasks. To further examine these findings, we compared the NOD of
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the two regions in the two age groups across the three tasks (Fig. 6A &
B).

A repeated measures ANOVA of task (arithmetic, symbolic number
comparison, non-symbolic number comparison) x age (children, AYA) x
ROIs (MTL, AG) yielded a significant age by ROI interaction (F(2455)
=7.62, p < .001). Specifically, the left MTL, but not the left AG, had
higher NOD in AYA than in children across tasks (Fig. 6C). A significant
task by ROI interaction (F(1, 456) = 4.64, p = .03) indicated that the left
MTL had higher NOD than the left AG in the number comparison tasks
but not in the arithmetic task across groups (Fig. 6D). There was also a
significant main effect of ROI (F(1, 456) = 6.49, p = .01): The left MTL
had overall higher NOD than the left AG (Fig. 6E). Finally, a significant
main effect of task (F(2455) = 2.98, p = .052) indicated that the NOD
across the left MTL and AG was overall highest in the arithmetic task
(Fig. 6F).

Together, these findings suggest the developmental changes in the
NOD occurred in the left MTL but not in the left AG. Furthermore, across
age groups, the left MTL had higher NOD than the left AG, particularly
for symbolic and non-symbolic number comparison tasks. Moreover, the
role of the left AG as a hub in the arithmetic task regardless of age seems
to suggest its domain specificity in arithmetic.

3.10. Comparison of MTL and AG node centrality

To further probe the differential network roles of the MTL and AG,
we examined betweenness centrality of the left MTL and AG in children
and AYA in arithmetic and symbolic and non-symbolic number com-
parison tasks. Node betweenness centrality is a measure used in network
analysis to quantify the importance of a node within a network
(Newman, 2005). It is measured as the fraction of all shortest paths in
the brain network that contain a certain region. Regions with high level
of betweenness centrality means they are in many shortest paths.

We conducted a repeated measures ANOVA of task (arithmetic,
symbolic number comparison, non-symbolic number comparison) x age
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Fig. 6. The left MTL is a stable causal hub across tasks while the left AG is a causal hub in the arithmetic task in AYA. A. Net outflow degree (NOD) of the left MTL
was significantly greater in AYA than children for the arithmetic task. Furthermore, AYA had consistently positive NOD in all three tasks, whereas children had
overall negative NOD for the arithmetic task. B. The NOD of the left AG was not significantly different between children and AYA for any task. C. Across the three
tasks, the left MTL had higher NOD in AYA than in children. No significant difference was observed between children and AYA for the NOD in the left AG. D. The
difference in NOD between the left MTL and AG was significant for symbolic and non-symbolic number comparison tasks. E. The left MTL overall had higher NOD
than the left AG across tasks and age groups. F. Overall NOD across the left AG and MTL was higher in the arithmetic task than the two number comparison tasks.

*p < .05, **p < .01, n.s., not significant, p > .05.

(children, AYA) x ROIs (MTL, AG), which revealed a significant age by
ROI interaction (F(2455) = 4.50, p = .03; Fig. 7C) and a significant task
by ROI interaction (F(2455) = 3.45, p = .03; Fig. 7D). Specifically, the
left MTL, but not the left AG, had higher centrality in children than AYA
across tasks (Fig. 7C). The left MTL had higher centrality than the left AG
in the arithmetic task but not in number comparison tasks. In addition,
we found a significant main effect of ROI (F(1456) = 19.21, p < .001;
Fig. 7E), with left MTL having overall higher centrality than left AG.
Finally, there was also a significant main effect of age (F(1456) = 7.59,
p = .006; Fig. 7F), with children having higher overall centrality than
AYA. Together, these results suggest a relatively stronger central role of
the left MTL compared to the left AG across children and AYA and the
developmental difference in the centrality of the left MTL, especially in
the arithmetic task.

It is noteworthy that high levels of centrality in the left MTL were
observed during arithmetic task for children, despite their low levels of
NOD, compared to AYA. Combined with the observation of enhanced
inflow and outflow in the left MTL in children, compared to AYA, during
arithmetic task, these findings suggest that the MTL may play a central
role in bidirectional causal interactions with the math-related brain
network during arithmetic task performance in early childhood.

3.11. Causal signaling in the left MTL and AG correlate with standardized
measures of math abilities

Finally, we examined whether NOD of the left MTL and AG during
mathematical tasks are correlated with individual differences in stan-
dardized measures of mathematical abilities. Mathematical achievement
was assessed using the Calculation, Math Fluency, and Applied Problem
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subtests from the Woodcock Johnson III Tests of Achievement (Schrank,
2011). Using canonical correlation analysis (CCA), we investigated the
relationship between NOD measures and mathematical achievement
scores separately for each age group and task.

In children, we found significant positive correlations between NOD
and math achievement scores across all three tasks (Pearson rs >.38,
p < .03). In contrast, these correlations were not significant in AYA
(Pearson rs <.29, ps >.05). Although the correlation strengths appeared
different between age groups, formal comparison of correlation slopes
revealed no significant differences across the three tasks (ts <.46, ps
>.65; see Methods).

When analyzing the combined sample, we found a significant posi-
tive correlation between NOD and math achievement scores specifically
in the arithmetic task (Pearsonr = .31, p = .006; Fig. 8A). No significant
correlations emerged for either the symbolic or non-symbolic number
comparison tasks (Peason rs <.13, ps >.10; Fig. 8B & C). Analyses
revealed that the significant correlation between combined hub prop-
erties and mathematical achievement was primarily driven by the left
MTL (left MTL: Pearsonr = .25, p = .02) rather than the left AG (Pearson
r =.20, p = .08; S4 Figure).

These findings indicate that the hub-like properties of the left MTL
and AG correlated with individual differences in mathematical abilities.
Notably, this brain-behavior relationship was most prominent during
arithmetic processing, suggesting that network organization during
more complex mathematical operations may be particularly important
for mathematical competence.



R. Liu et al. Developmental Cognitive Neuroscience 76 (2025) 101628

e Left MTL B. Left AG
40 Fedek M Children 40 B Children
] AYA ] M AYA
> 35 O 3‘35
'© 301 ‘® 30
E n.s. E 25
% 201 n.s. @ 201
e o
c 15- c 157
) 9
£ 101 £ 10;
@ 5 B 5
Arithmetic ~ Symbolic ~ Non-symbolic Arithmetic ~ Symbolic  Non-symbolic
Comparison  Comparison Comparison ~ Comparison

0O

O
m
m

230 o B Children 530 Left MTL §~30 2 3

825 I AYA £257 2xx M Left AG ©25 £25

5 5 n.s. t — s c —E
820 820 s 820 820

A 7] e » »

£15 n.s. é 15 815 é 15

g10 $10 10 210 B
Z 5 z . 2 2

) o g5 @ 5

0 0+-—== " , 0 0 ,
Left MTL Left AG Arithmetic ~Symbolic_Non-symbolic Left MTL  Left AG Children AYA

Comparison Comparison

Fig. 7. The left MTL showed developmental difference in betweenness centrality in the network of regions of interest in the arithmetic task. A. The betweenness
centrality of the left MTL was significantly higher in children than AYA in the arithmetic task. B. The left AG showed no significant difference in betweenness
centrality between children and AYA in all three tasks. C. Children and AYA differed in betweenness centrality in the left MTL across the three tasks. Such age
difference was not seen in the left AG. D. The left MTL showed higher betweenness centrality than the left AG in the arithmetic task. E. The left MTL overall had
higher betweenness centrality than the left AG across tasks and age groups. F. Overall betweenness centrality across the left MTL and AG was higher in children than
AYA. **p < .01, ***p < .005, n.s., not significant, p > .05.
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Fig. 8. Network hub properties predict mathematical achievement during arithmetic processing. Canonical correlation analysis between network outflow degree
(NOD) of the left MTL and AG and standardized mathematical achievement scores. A. Significant positive correlation between NOD and mathematical achievement in
the arithmetic verification task. B. No significant correlation between NOD and mathematical achievement in the symbolic number comparison task. C. No significant
correlation between NOD and mathematical achievement in the non-symbolic number comparison task. NOD reflects the difference between outgoing and incoming
causal interactions for each region (see Fig. 1 and Methods). Mathematical achievement was assessed using the Calculation, Math Fluency, and Applied Problems
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4. Discussion signaling patterns between children and adolescents and young adults
(AYA). Our findings reveal novel insights into how mathematical
We examined causal dynamics of memory circuits within a distrib- cognition emerges through dynamic interactions between multiple brain

uted brain network implicated in mathematical cognition and compared systems, with memory circuits in the MTL and AG playing distinct
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developmental roles. The MTL undergoes a significant developmental
shift, transitioning from exhibiting heightened, context-dependent, in-
teractions in childhood to serving as a stable causal hub in adulthood
across multiple mathematical tasks. In contrast, the AG maintains
consistent hub-like properties specifically during arithmetic processing
throughout development, suggesting early specialization for fact
retrieval. These contrasting developmental trajectories indicate that
different memory systems mature along distinct timelines to support
mathematical processing.

Notably, both regions show heightened bidirectional interactions in
childhood, particularly during arithmetic processing, suggesting less
efficient network organization early in development. These patterns of
interaction become more refined with age, with the MTL emerging as a
domain-general hub for mathematical processing while the AG main-
tains its specialized role in arithmetic. Furthermore, the strength of these
network properties correlates with individual differences in mathe-
matical abilities, especially in arithmetic problem solving, highlighting
their particular importance during mathematical skill acquisition.

These results challenge traditional views of mathematical cognition
by demonstrating that memory systems play crucial but distinct roles in
mathematical processing, with their contributions evolving significantly
across development. This new understanding suggests that mathemat-
ical cognition relies on the coordinated maturation of multiple memory
systems, each supporting different aspects of mathematical thinking at
different developmental stages.

4.1. Developmental changes in causal network dynamics are task
dependent

To quantify developmental changes in network dynamics, we con-
ducted a classification analysis of network patterns between children
and AYA across the three tasks. Our analysis revealed that the classifi-
cation accuracy of network dynamics between children and AYA was
highest in the arithmetic task (76.97 %), followed by the non-symbolic
number comparison task (62.96 %), and lowest in the symbolic number
comparison task (56.45 %).

The observed differences in network dynamics across tasks (arith-
metic > non-symbolic > symbolic comparison) underscore the impor-
tance of considering task demands when studying mathematical
cognition. The arithmetic task, which relies more heavily on fact
retrieval and procedural knowledge, elicited the greatest differences
between age groups. This finding supports the idea that brain network
organization becomes more specialized and efficient with development
and experience (Menon, 2013; Supekar et al., 2013). The lower classi-
fication accuracy in symbolic and non-symbolic number comparison
tasks suggests that the neural processes underlying these more basic
numerical skills may mature earlier or require less extensive network
reorganization. The gradient of developmental differences across tasks
highlights the dynamic nature of brain network development in math-
ematical cognition and emphasizes the value of examining multiple
aspects of mathematical cognition to gain a comprehensive under-
standing of the developing mathematical brain.

Our study also demonstrates the utility and power of the multivariate
dynamic state-space identification model in estimating causal in-
teractions between distributed brain regions involved in math cognition.
This advanced analysis approach allowed us to examine large-scale
network dynamics, significantly extending beyond the limitations of
our previous intracranial EEG study (Das and Menon, 2022), which were
constrained by small sample sizes and limited spatial coverage. Our
state-space model provides a more comprehensive understanding of
how different brain regions interact during mathematical processing and
how these interactions evolve with development. By capturing the
directional flow of information between brain regions, this method of-
fers a unique window into the causal architecture of the mathematical
brain network.
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4.2. MTL is a causal network hub in adolescents and young adults (AYA)
but not in children

Next, we examined the role of the MTL as a causal signaling hub
across different age groups and tasks. Our findings confirm and extend
previous evidence from intracranial EEG studies suggesting that the
hippocampus serves as a major causal signaling hub in arithmetic pro-
cessing (Das and Menon, 2022). These effects were observed only in AYA
but not in children. We observed that the left MTL consistently showed
strong outflow across all three tasks in AYA, indicating its role as a
general causal signaling hub in numerical processing.

In contrast to the left MTL, the right MTL showed stronger outflow
only in the non-symbolic number comparison task, suggesting potential
domain specificity of the right MTL. Non-symbolic number comparison
involves spatial representations of quantity, which has been associated
with the right hemisphere processes (Holloway et al., 2010). This
hemispheric also aligns with the general observation that symbolic
processing may engage the left MTL more prominently (Hocking et al.,
2009; Price, 2012; Whitney et al., 2009). The verbal component in the
arithmetic and symbolic number comparison tasks may engage the left
MTL more consistently across participants, whereas both hemispheres
may be similarly engaged in the non-symbolic task without a language
component. This lateralization could reflect the dominant role of the left
hemisphere in language processing and symbolic representation, which
are crucial for arithmetic and symbolic number processing. This finding
advances our understanding of how different aspects of numerical
cognition may engage distinct MTL neural circuits.

4.3. Developmental changes in MTL causal network dynamics

We next compared the MTL network dynamics between children and
AYA. We first focused on direct comparison of net outflow (outflow —
inflow) reflecting a causal signaling hub between the two groups and
then compared outflow and inflow separately between the groups. A
striking finding of our study is the developmental change observed in the
MTL. In children, we did not find net causal outflow signaling in the MTL
to be significant in any of the three tasks. Moreover, the direction of net
outflow in the MTL changed across tasks, suggesting unstable and
context-dependent causal signaling in childhood.

Surprisingly, additional analysis revealed that with outflow and
inflow measures taken separately, both outflow and inflow were
enhanced in children, leading to diminished net outflow degree (i.e.,
outflow - inflow) in all three tasks. For the outflow measure, the largest
developmental difference was observed in the arithmetic task (effect size
d =.77), followed by the symbolic (d =.51) and non-symbolic (d =.49)
number comparison tasks. The inflow followed the same trend, where
the largest developmental difference was seen in the arithmetic task (d =
1.74), followed by symbolic (d =.78) and non-symbolic (d =.65) number
comparison tasks. These results suggest that causal signaling both from
and to the MTL may be undergoing maturation in children, exhibiting a
profile of hyper-causal signaling in both outflow and inflow directions,
leading to reduced hub-like properties when compared to AYA.

The hyper-signaling observed in the MTL in children, characterized
by increased bidirectional causal interactions, may reflect a less effi-
cient, more diffuse pattern of information processing. This could be
indicative of a developmental stage where the MTL may be highly plastic
and responsive, but not yet optimized for efficient mathematical per-
formance. The greatest developmental difference observed in the
arithmetic task suggests that this potential developmental change is
particularly pronounced for more complex mathematical operations
that may rely more on memory retrieval.

Our findings align with previous studies (Qin et al., 2014; Rivera
et al., 2005), which found higher hippocampal activity in arithmetic
tasks in children compared to adults. The gradual transition from this
heightened bidirectional interaction state in childhood to a more
directed, efficient causal signaling hub in adolescence and adulthood
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may represent a key aspect of mathematical skill development. This shift
could reflect the refinement of distributed neural circuits leading to
more specialized and efficient information flow within the mathematical
cognition network.

4.4. AG serves as a causal network hub only during arithmetic processing

Given the extant literature implicating the AG in mathematical
cognition, we examined its role as a potential causal signaling hub across
our three tasks and two age groups. Analysis of net outflow degree (i.e.
outflow — inflow) revealed that the left AG functions as a strong causal
signaling hub in both children and AYA specifically during arithmetic,
but not during symbolic or non-symbolic number comparison tasks. This
task specificity aligns with previous research showing AG involvement
in arithmetic processing in both children and adults (Polspoel et al.,
2017; Grabner et al., 2013), suggesting its specialized role in more
complex mathematical operations that rely on fact retrieval and se-
mantic memory processing.

Notably, while the net outflow in the AG showed no developmental
differences, suggesting early establishment of its hub-like properties in
arithmetic processing, the pattern of interactions revealed interesting
developmental changes. Children exhibited higher levels of both
outflow and inflow in the left AG compared to AYA during arithmetic
and symbolic number comparison tasks, but not during non-symbolic
number comparison. This pattern of selective difference between age
groups suggests that developmental changes in AG may be specifically
related to symbolic information processing. The increased bidirectional
causal interactions observed in children might reflect less efficient, more
diffuse processing, paralleling our observations in the MTL.

4.5. Comparing developmental changes in network dynamics of the MTL
and AG

Our analysis revealed that both the left MTL and left AG function as
causal signaling hubs, but with distinct developmental trajectories and
task specificities. We additionally compared NOD and betweenness
centrality in these regions, collapsed across age groups and tasks. The
results revealed a striking dissociation: while the left MTL showed strong
developmental differences in both NOD and centrality measures, the left
AG maintained consistent network properties in all tasks across devel-
opment (Fig. 6C and Fig. 7C).

The developmental differences in the left MTL were particularly
pronounced during arithmetic but not during symbolic or non-symbolic
number comparison tasks (Fig. 6A and Fig. 7A). This task-specific
pattern provides compelling evidence that the maturation of MTL
function in mathematical processing is context-dependent. Specifically,
the MTL appears to undergo more substantial developmental changes in
its network role during complex mathematical operations that require
fact retrieval and computation, compared to basic numerical compari-
son tasks.

This dissociation between the MTL and AG suggests different
developmental trajectories for distinct memory systems supporting
mathematical cognition. While the AG appears to establish its role in
arithmetic early and maintain it through development, the MTL shows a
more complex pattern of maturation, particularly in its support of
advanced mathematical operations.

4.6. Relation between causal network dynamics and mathematical
abilities

Canonical correlation analysis revealed distinct patterns in how
network properties relate to mathematical abilities across development
and task contexts. In children, we found significant correlations between
the NOD of the left MTL and AG and performance on standardized
measures of calculation, arithmetic fluency, and applied mathematical
problem solving across all tasks. In contrast, AYA showed no significant
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correlations between these network properties and mathematical
achievement. Although the correlation patterns appeared differently
between age groups, formal comparison of correlation slopes revealed
no significant developmental differences.

When analyzing the combined sample, we found that NOD correlated
with mathematical achievement specifically during arithmetic verifi-
cation, but not during symbolic or non-symbolic number comparison.
Moreover, the NOD of the left MTL showed strong correlations with
standardized measures of math ability. These findings extend previous
research on the relationship between MTL and AG structure, function,
and mathematical abilities, with a stronger emphasis on the importance
of the left MTL (Abreu-Mendoza et al., 2022; De Smedt et al., 2011;
Grabner et al., 2009a,b; Supekar et al., 2013; Wilkey et al., 2018). The
task-specific nature of these relationships aligns with evidence that
symbolic arithmetic processing is particularly predictive of formal
mathematical skills (Brankaer et al., 2014; Fazio et al., 2014; Lyons
et al., 2014; Menon and Chang, 2021).

These brain-behavior relationships suggest that the transition from
heightened interactions in childhood to more stable, efficient configu-
rations in adulthood may represent a key mechanism in mathematical
development (Abreu-Mendoza et al., 2022; Jolles et al., 2016; Menon
and Chang, 2021; Price et al., 2018; Qin et al., 2014; Rosenberg-Lee
et al,, 2015). Understanding these task-specific and developmental
changes in brain-behavior relationships could have important implica-
tions for identifying and supporting individuals with mathematical
learning difficulties.

4.7. Role of MTL and AG memory circuits in mathematical cognition

Our findings advance understanding of the role of the MTL in
mathematical processing in several ways. First, they provide causal
evidence for the involvement of the MTL across a range of numerical
tasks, from basic number comparisons to more complex arithmetic op-
erations, supporting its proposed role as a general hub in mathematical
cognition. Second, the presence of the MTL as a hub in AYA across all
tasks, but not in children, suggests its role becomes more generalized
with development. Third, the developmental pattern of enhanced bidi-
rectional interactions in children, coupled with the emergence of net
outflow in the MTL in AYA, suggests a significant directional refinement
of MTL function with development. The transition from heightened
bidirectional interactions in childhood to more focused, unidirectional
outflow in AYA suggests a developmental shift towards more efficient
information processing in this region. This could reflect the maturation
of the MTL as a stable, task-independent hub for mathematical pro-
cessing may occur later in development, through enhanced directed
connectivity with task-relevant regions.

Our results also advance our understanding of the role of the AG in
arithmetic processing in several ways. First, they provide causal evi-
dence for the involvement of the AG specifically in arithmetic, sup-
porting its proposed role in fact retrieval. The absence of the AG as a hub
in number comparison tasks suggests that its role may be limited to more
complex mathematical operations that rely on semantic memory or
procedural knowledge. Second, they reveal that the net influence of the
AG during arithmetic remains stable across development, which sug-
gests its task-specificity may be established early in development. Third,
the reduction in bidirectional interactions from childhood to adoles-
cence suggests a refinement of AG function across development,
potentially reflecting increased efficiency in interaction with task-
relevant regions.

Our findings also have implications for understanding the differen-
tial roles of the MTL and AG in mathematical cognition. While both
regions showed higher bidirectional interactions in children, the AG
maintained its hub status across development in arithmetic tasks, unlike
the MTL. This suggests that the AG may play a more stable, task-specific
role in arithmetic processing, while the MTL’s function appears to un-
dergo more substantial developmental changes across various numerical
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tasks. These findings converge with reports from training studies that
point toward a central role of the hippocampus and other MTL structures
in the acquisition and consolidation of a broad range of mathematical
knowledge, and not just arithmetic facts (Bloechle et al., 2016; Kutter
et al., 2018, 2022; Ustiin et al., 2021).

4.8. Implications for understanding the role of memory systems in
mathematical cognition

Our findings further highlight the crucial role of memory systems in
mathematical cognition, particularly emphasizing the dynamic
involvement of the MTL in development. The MTL, traditionally asso-
ciated with declarative memory, emerged as a key player in numerical
processing across various tasks in adolescence and young adulthood,
suggesting that memory processes are integral to mathematical cogni-
tion even in tasks that may not rely on fact retrieval. The maturation of
the MTL to a more refined, unidirectional signaling hub in adolescence
and adulthood suggests that increased efficiency of the MTL memory
system may support mathematical processing later in development.

These findings provide new insights into how different memory
systems contribute to mathematical cognition. Rather than viewing
mathematical processing as solely dependent on abstract symbol
manipulation, our results reveal the dynamic involvement of multiple
memory systems. The MTL’s engagement across both basic numerical
and complex arithmetic tasks suggests that its memory-related compu-
tations may support multiple aspects of mathematical processing, from
forming symbol-quantity associations to storing and retrieving arith-
metic facts. The AG’s specific involvement during arithmetic, but not
comparison tasks, indicates a more specialized role, potentially in se-
mantic retrieval processes that support arithmetic fact recall.

The developmental changes observed in both the MTL and AG imply
that maturation of multiple memory systems contribute to the devel-
opment of mathematical skills. This has important implications for
educational approaches, suggesting that strategies targeting the
enhancement of these memory systems could be beneficial for
improving mathematical abilities. Moreover, the distinct developmental
trajectories of the MTL and AG suggest that different aspects of memory
might be targeted at different developmental stages to optimize math-
ematical learning.

4.9. Developmental changes in network dynamics may reflect excitatory/
inhibitory balance maturation

Finally, we consider potential neurophysiological bases of our find-
ings. The pattern of heightened bidirectional interactions observed in
children likely reflects developmental changes in excitatory/inhibitory
(E/I) balance over the course of brain maturation. While we do not have
direct evidence for E/I developmental changes in this numerical
cognition domain, substantial evidence from developmental neurosci-
ence indicates that E/I balance undergoes significant maturation from
childhood to adulthood (Saberi et al., 2025; Zhang et al., 2024; Zhang
et al., 2011). During early development, excitatory connections are
more prevalent and are gradually refined through inhibitory circuit
maturation and synaptic pruning (Caballero et al., 2021; Chechik et al.,
1999). This developmental trajectory is consistent with our observation
of heightened bidirectional interactions in children that become more
focused and efficient in adults.

Supporting this interpretation, previous research has shown that
children with mathematical learning disabilities exhibit hyperactivity
and hyperconnectivity compared to matched controls (Jolles et al.,
2016; Rosenberg-Lee et al., 2015), suggesting that disrupted E/I ratios
may be associated with less efficient cognitive processing. Our finding
that children with stronger bidirectional interactions show better cor-
relations with mathematical abilities may indicate that some degree of
elevated E/I activity during development is beneficial for mathematical
skill acquisition. However, the maturation toward more balanced and

15

Developmental Cognitive Neuroscience 76 (2025) 101628

selective signaling appears necessary for optimal adult-level
performance.

This developmental perspective suggests that the transition from
diffuse, bidirectional signaling in childhood to more focused, hub-like
organization in adulthood reflects fundamental maturation of cortical
circuits supporting mathematical cognition. Understanding these E/I
developmental changes may provide insights into both typical mathe-
matical development and potential targets for intervention in mathe-

matical learning difficulties.
5. Conclusion

Our study provides novel insights into the development of brain
networks involved in mathematical processing, revealing dynamic
changes in causal interactions and signaling hubs from childhood to
adulthood. We found that the MTL in the left hemisphere undergoes a
significant developmental shift, transitioning from hyper-signaling and
context-dependent causal interactions in childhood to serving as a stable
causal signaling hub in numerical processing in adolescence and young
adulthood. In contrast, the left AG maintained consistent hub-like
properties across development specifically during arithmetic process-
ing. These patterns of findings highlight distinct developmental trajec-
tories for different memory systems supporting mathematical cognition.
Our findings reveal that the network dynamics of the MTL may undergo
a global developmental shift, reflecting the maturation of declarative
memory systems that support efficient mathematical processing across
multiple domains, from basic number processing to complex arithmetic.

By elucidating the causal dynamics of memory circuits within the
math brain network and how they change with development, our study
contributes to the growing body of knowledge on the neuro-
developmental basis of mathematical cognition. These insights open
new avenues for research into the intersection of memory and mathe-
matical cognition, potentially leading to more effective, developmen-
tally appropriate strategies for mathematics education and interventions
for mathematical learning difficulties.
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