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A B S T R A C T

Mathematical cognition engages a distributed brain network, but the causal dynamics of information flow within 
it, particularly how memory circuits interact with other brain regions across development, remain unknown. We 
examined causal dynamic interactions in typically developing children and adolescents/young adults (AYA) 
using fMRI during three tasks involving mental arithmetic and symbolic and non-symbolic number comparison. 
Using multivariate dynamic state-space identification modeling, we found that causal dynamic interactions 
differed between children and AYA across all three tasks, especially during arithmetic processing. The left medial 
temporal lobe (MTL) served as a causal signaling hub in AYA across all three tasks, but not in children. The left 
angular gyrus (AG) maintained consistent hub-like properties during arithmetic task across development. 
Compared to AYA, children exhibited heightened causal interactions in both the MTL and AG. Moreover, 
network hub properties of these regions correlated with individual’s mathematical achievement specifically 
during arithmetic processing. Together, we found that the MTL transitioned from heightened, context-dependent, 
interactions in childhood to a stable causal hub in adulthood, while the AG maintained as a hub during arith
metic processing across development. This dissociation between memory systems, coupled with their task- 
specific relationship to mathematical abilities, provides novel insights into how brain networks mature to sup
port mathematical cognition.

1. Introduction

Formal mathematical thinking involves multiple cognitive processes 
that enable us to perform a wide range of tasks, from basic number 
processing to complex problem solving (Menon, 2016; Menon and 
Chang, 2021). These mathematical skills are essential for functioning in 
daily life and professional and academic success (Ritchie and Bates, 
2013). While considerable research has focused on the role of parietal 
and frontal regions in mathematical cognition (Sokolowski, Fias et al., 
2017; Arsalidou, Pawliw-Levac et al., 2018; Hawes, Sokolowski et al., 
2019), emerging evidence suggests that memory systems also play a 
crucial role in mathematical processing (Menon, 2016; Peters and 
Smedt, 2017; Menon and Chang, 2021). Understanding how memory 
systems interact with other brain regions during mathematical cognition 
is particularly important because it may reveal how mathematical 
knowledge is acquired, consolidated, and retrieved – processes that are 

fundamental to mathematical learning and development. The dynamic 
interactions between memory systems and other cortical regions 
involved in numerical cognition across development remain largely 
unexplored, leaving a critical gap in our understanding of how the brain 
supports mathematical learning and problem-solving. Investigating 
these interactions could provide important insights into both typical and 
atypical mathematical development, potentially informing educational 
practices and interventions for mathematical learning difficulties.

Recent evidence has revealed the critical involvement of two key 
memory-related brain systems in mathematical cognition: the medial 
temporal lobe (MTL) and the angular gyrus (AG). The MTL, traditionally 
associated with episodic and declarative memory, has emerged as a key 
component in mathematical processing through converging evidence 
from multiple methodological approaches and levels of analysis (Chang 
et al., 2022; Cho et al., 2012; Qin et al., 2014). The AG has long been 
shown associated with arithmetic processing, especially fact-retrieval 
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based arithmetic problem solving (Grabner, Ansari et al., 2009; Grabner, 
Ansari et al., 2013; Sokolowski, Matejko et al., 2023).

Functional brain imaging studies suggest that the MTL plays a crucial 
but time-limited role in the early phases of mathematical knowledge 
acquisition (Menon, 2016; Qin et al., 2014; Rivera et al., 2005), 
particularly as children transition from procedural strategies to 
memory-based retrieval strategies in mathematical problem-solving 
(Cho et al., 2011, 2012). This developmental pattern suggests that a 
dynamic involvement of the MTL across mathematical skill develop
ment. However, the precise mechanisms by which MTL circuits mature 
and how their role in mathematical cognition evolves across develop
ment remain poorly understood.

The involvement of the MTL in mathematical processing extends to 
fundamental levels of numerical cognition. The activation of this region 
observed during the mere perception of arithmetic symbols, such as the 
’+ ’ sign, suggests its role in building associations between mathematical 
operators and problem-solving procedures (Mathieu et al., 2018). This 
basic-level engagement is complemented by remarkable specificity at 
the cellular level. Single-neuron recordings in humans have demon
strated that individual MTL neurons can represent both symbolic and 
non-symbolic numbers with high precision (Kutter et al., 2018) and even 
discriminate between different arithmetic operations (Kutter et al., 
2022). These neurons carry sufficient information to allow statistical 
classifiers to differentiate between addition and subtraction instructions 
during mental calculation, suggesting that mathematical operations may 
rely on neural mechanisms similar to those supporting other forms of 
memory. While these findings provide crucial insights into the cellular 
basis of mathematical processing in the MTL, they are inherently limited 
by their focus on individual brain areas, leaving open questions about 
how the MTL interacts with broader neural circuits during mathematical 
cognition.

Beyond investigations of local representations, recent evidence 
suggests the MTL may serve as a critical hub in the broader mathe
matical processing network. An intracranial EEG study demonstrated 
that the MTL functions as a crucial signaling hub during arithmetic 
problem solving in adults, showing strong outgoing interactions with the 
intraparietal sulcus (IPS) and ventral temporal occipital cortex (Das and 
Menon, 2022). However, the generalizability of these findings is con
strained by the limited spatial coverage and modest sample sizes 
inherent in human neurophysiology studies. Moreover, how these causal 
dynamics might change across diverse mathematical tasks and devel
opment in neurotypical populations remains unknown. Understanding 
such potential task specificity and developmental changes is crucial for 
building a comprehensive model of how the MTL supports mathematical 
learning and problem-solving across development.

The AG represents another critical memory-related region implicated 
in mathematical cognition, particularly in the context of arithmetic fact 
retrieval (Kadosh and Walsh, 2009). Within the parietal cortex, the AG 
and IPS have been associated with distinct aspects of numerical cogni
tion: while the IPS has been consistently implicated in the representation 
and manipulation of quantity and procedural strategy use (Bueti and 
Walsh, 2009; Menon et al., 2000; Piazza et al., 2007), the AG has been 
specifically linked to retrieval of arithmetic facts (Grabner et al., 2009; 
Sokolowski et al., 2023; Tschentscher and Hauk, 2014). However, the 
precise role of the AG remains debated (Sokolowski et al., 2023). While 
some studies suggest the AG works in concert with the MTL during 
fact-retrieval-based arithmetic learning (Fias et al., 2021), others indi
cate its role during mathematical tasks may be weaker than that of the 
MTL (Bloechle et al., 2016; Das and Menon, 2022). This discrepancy 
might reflect the involvement of the AG in broader cognitive functions 
beyond mathematical processing. Consistent with this view, studies 
have shown that the AG is involved in various aspects of semantic 
processing and memory retrieval across multiple cognitive domains 
(Binder et al., 2009; Kuhnke et al., 2023; Rockland and Graves, 2023), 
suggesting it may support more general memory retrieval processes than 
holding a specific role in mathematical cognition.

Considering the interactions of the AG within the larger mathemat
ical processing network may provide critical insights into the specific 
functional role of this region. While previous studies have examined the 
activation patterns (Rosenberg-Lee et al., 2011) or functional connec
tivity (Uddin et al., 2010) of the AG, few have investigated its causal 
dynamics within the broader network of regions supporting mathe
matical cognition. Understanding how the AG interacts with other brain 
regions, particularly the MTL, during mathematical processing could 
help clarify its specific contribution to mathematical cognition.

By comprehensively examining the dynamic circuits associated with 
both MTL and AG memory systems in the context of a larger-scale math- 
related brain network, the current study aimed to clarify our under
standing of the roles of these memory systems in mathematical cogni
tion. This approach allows us to directly compare the causal signaling 
properties of these regions across different mathematical tasks and 
developmental stages, potentially resolving some of the apparent con
tradictions in the literature and providing a more nuanced under
standing of how different memory systems support mathematical 
cognition.

To address these gaps in our understanding, we employed a novel 
multivariate dynamic state-space identification (MDSI) model to 
examine causal interactions of the MTL and AG within a distributed 
brain network consistently implicated in mathematical cognition 
(Fig. 1). The MDSI model provides several key advantages over tradi
tional connectivity analyses: it can estimate directed causal influences 
between multiple brain regions simultaneously, accounts for the 
regional differences in hemodynamic response function, and has been 
rigorously validated using optogenetic stimulation and neuronal simu
lations (Ryali et al., 2011). This approach allowed us to investigate brain 
circuits during mathematical processing, overcoming limitations of 
previous methods. We studied neurotypical children and ado
lescents/young adults (AYA) using three fMRI tasks: arithmetic verifi
cation, which involves math fact retrieval and computation; symbolic 
number comparison, which requires processing of learned numerical 
symbols; and non-symbolic number comparison, which engages basic 
quantity processing. This comprehensive design allowed us to examine 
how network dynamics differ across fundamental and complex mathe
matical operations, while also investigating developmental changes in 
these neural circuits.

Our research goals were fivefold. First, we aimed to examine whether 
the MTL functions as a causal signaling hub during arithmetic, extending 
previous iEEG findings to a larger sample and broader network. Second, 
we investigated whether these dynamics extend to foundational number 
processing tasks, examining how network interactions vary across 
different mathematical contexts. Third, we studied developmental 
changes in network dynamics by comparing school-aged children, who 
are still acquiring mathematical skills, with AYA who have achieved 
proficiency. Fourth, we directly compared causal signaling between the 
MTL and AG across tasks and age groups to understand their differential 
roles in mathematical cognition. Finally, we examined how the network 
properties of these regions relate to individual differences in standard
ized measures of mathematical abilities.

Based on previous findings using intracranial EEG recordings (Das 
and Menon, 2022), we hypothesized that the MTL would serve as a 
major causal signaling hub in the mathematical brain network, while the 
AG might play a relatively limited role. We predicted that network in
teractions would be modulated by both the type of mathematical 
knowledge and experience, leading to differences across tasks and age 
groups. These predictions were based on previous observations of 
developmental differences in MTL engagement during mathematical 
processing (Rivera et al., 2005; Peters and Smedt, 2018).

Our study provides novel insights into how memory circuits support 
mathematical cognition, revealing dynamic and context-specific causal 
interactions within the mathematical processing brain network. We 
found that the MTL undergoes a significant developmental shift, tran
sitioning from exhibiting heightened, context-dependent, causal 
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interactions in childhood to functioning as a stable causal signaling hub 
in adulthood. In contrast, the left AG maintained a consistent role as a 
causal signaling hub specifically during arithmetic processing across 
development. Our findings suggest that mathematical processing is 
supported by both specialized numerical systems and general-purpose 
memory mechanisms, with their relative contributions and in
teractions changing through development. This integrated view opens 
new avenues for understanding mathematical learning difficulties and 
developing targeted interventions and developing targeted in
terventions that consider both the developmental stage and the specific 
memory systems involved.

2. Methods

2.1. Participants

Forty-nine children (7–10 years; mean age = 8.2 ± 0.7 years; 27 
females) and 48 adolescents and young adults (AYA; 14–21 years; mean 
age = 18.3 ± 1.6 years; 25 females) participated in the study. Data from 
17 child participants and 2 AYA participants were excluded due to 
excessive head motion during MRI scans (13 children and 2 AYA) or 
incomplete fMRI task data (4 children). For determining the excessive 
head motion, we used 3 mm maximum frame-to-frame displacement for 
children and 1 mm for AYA. The final sample included 32 child partic
ipants (7–9 years; mean age = 8.2 ± 0.5 years; 20 females) and 46 AYA 
participants (14–21 years; mean age = 18.3 ± 1.6 years; 23 females). All 

Fig. 1. Schematic view of task and analysis pipeline. A. In the arithmetic task, participants were shown an addition equation and were instructed to decide whether the 
equation was correct or not. Only single digits were used in the equations. B. In the symbolic number comparison task, participants saw a pair of single-digit Arabic 
numerals and were asked to decide which side had the lager number. The range of numerals was one through nine. C. In the non-symbolic number comparison task, 
participants saw a pair of dot arrays and decided which side had the larger quantity of dots. The range of dots was from one to nine. The size and total area of the dot 
arrays were controlled to not correlate with the quantity of dots. D. Behavioral performance of children and adolescents and young adults (AYA) in arithmetic and 
symbolic and non-symbolic number comparison tasks. Overall, participants were faster and more accurate in number comparison tasks and slower and less accurate 
in the arithmetic task. AYA performed better than children in all tasks, with the most prominent group difference observed for the arithmetic task. E. An illustration of 
the 23 regions of interest (ROIs) from a meta-analysis of previous studies on numerical cognition and memory (see details in Methods). F. The analysis pipeline of the 
current study. For each subject in each task, the blood oxygen level dependent (BOLD) time series from each of the 23 ROIs and the task design vector were entered to 
the multivariate dynamic state-space identification (MDSI) model to estimate the latent dynamic interaction among the 23 ROIs. the MDSI model generated a 23 by 
23 causal dynamic matrix with each column indicating the outflow interaction from one ROI to all ROIs and each row indicating the inflow interaction from all ROIs 
into one ROI. The net outflow degree (NOD) for each ROI was calculated as the difference between the sum of absolute outflow values of each ROI and the sum of 
absolute inflow values of each ROI. The ROIs with NOD values significantly above zero were defined as the outflow hubs. The outflow and inflow patterns in these 
hubs and developmental differences were assessed by repeated measures analysis of variance (ANOVA) and paired t-tests. Logistic regression classifiers with Elastic 
Net were used to determine whether the two age groups were decodable in each task and whether the three tasks were decodable in each age group. Betweenness 
centrality analysis identified nodes in a network that participated in many shortest paths. Finally, canonical correlation analysis was used to measure the relationship 
between the NOD of the causal signaling hubs and general math abilities. ***p < .005.
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participants enrolled in the current study were right-handed. No par
ticipants reported neurological, psychiatric, or vision disorders. All 
adult participants provided written informed consent. For participants 
under 18 years old, we obtained written informed consents from their 
parents/legal guardians and assent from the participants. All partici
pants received monetary compensation for their participation. The study 
was conducted in accordance with the Declaration of Helsinki and was 
approved by the local ethics committee of the institution.

2.2. Tasks

Participants completed three mathematical tasks during fMRI scan
ning: an arithmetic task, a symbolic number comparison task, and a non- 
symbolic number comparison task. To maximize data collection, and 
minimize order effects while maintaining consistency across partici
pants, all participants completed the tasks in the same sequence: arith
metic task run 1, symbolic number comparison task, non-symbolic 
number comparison task; an additional arithmetic task run 2 was then 
acquired to ensure that all three tasks had similar number of trials.

2.2.1. Arithmetic task
In the arithmetic task, participants were shown series of addition 

equations and were instructed to judge whether the equations were 
correct or not by choosing between two buttons. Each participant 
completed two runs of the task, with 52 trials in each run and each run 
lasted 380 s. The task was programmed in Psychopy (Peirce et al., 2019) 
with a jittered event-related design. In each trial, an equation was pre
sented in a white font at the center of a 1024 × 768 black screen for 5 s 
and followed by a black blank screen with a duration of either 0, 2.5, or 
3.5 s. Participants were allowed to make a response within the 5 s time 
window. Both operands and the answer in each equation were 
single-digit Arabic numerals. Within each run, half of the trials were 
simple problems with one operand being one and the other half were 
complex problems with both operands greater than one. Half of the trials 
were presented with the larger operand as the first and the other half 
with the smaller operand as the first. Moreover, half of the trials were 
correct equations and the other half were incorrect equations. Finally, 
the order of the equations was pseudorandomized with each run.

2.2.2. Symbolic number comparison task and non-symbolic number 
comparison task

In the symbolic number comparison task, participants saw pairs of 
single-digit Arabic numerals presented side by side and were instructed 
to pick the side with the larger number by button pressing. Similarly, in 
the non-symbolic number comparison task, participants viewed pairs of 
dot arrays presented side by side and needed to judge which side con
tained more dots by button pressing. The tasks were also programmed in 
Psychopy (Peirce et al., 2019) with a jittered event-related design. Each 
comparison task contained one run with 64 trials. In each stimulus, the 
left number/dot array was always located 40 % away from the left side 
of the screen and the right number/array was always located 40 % away 
from the right side. In the non-symbolic number comparison task, the 
dot size and the total area of the dot array were controlled so neither of 
the two perceptual dimensions was correlated with the quantity of the 
dots. The ratio between two numbers or dot arrays varied between 
1.125, 1.17, 1.33, 2, 2.25, 2.67, 3.5, 6 across all trials. Each trial started 
with a green fixation (a “*”) for 0.5 s, followed by two numbers or two 
dot arrays were shown in green color on a 1024 × 768 black screen for 
1 s a black blank screen for 1.5 s, and a jitter screen between 1.7 and 
3.8 s. Each task lasted for 362 s. In each task, there were 16 unique pairs 
of quantities and each of them was repeated 4 times, resulting in 64 
trials in total.

2.3. MRI data acquisition and preprocessing

Task-based functional MRI data were acquired on a 3 T GE scanner 

using a T2* weighted gradient echo-spiral in-out pulse sequence 
(TR=2000 msec, TE=30 msec, FOV = 220 mm2, matrix size = 64 × 64, 
pixel size = 3.4375 mm, slice thickness = 4 mm, flip angle = 80 degree). 
A T1- weighted, high-resolution structural image was acquired for the 
anatomical co-registration of functional images (slice thickness 1 mm; 
in-plane resolution: 256 × 256, voxel size = 1.5 × 0.9 × 1.1 mm3). All 
functional images were preprocessed using SPM12 (Ashburner et al., 
2020). The first five volumes of each time-series were discarded to allow 
for signal equilibration. The preprocessing pipeline included realign
ment, slice-timing correction, co-registration to subjects’ structural T1 
images and normalization to a 2 mm MNI152 template, and smoothing 
using a 6 mm full-width half-maximum Gaussian kernel to decrease 
spatial noise. The proportion of volumes with scan-to-scan displacement 
higher than 0.5 voxel did not exceed 10 % across tasks. Movement did 
not exceed 3 mm in any rotational and translational axes. Mean 
scan-to-scan displacement did not exceed 0.5 mm (See S1 Table for 
detailed descriptive statistics). To account for potential influences of 
unmatched head motion between groups, head motion parameters were 
included as covariates of no interest in fMRI general linear model 
analysis.

To rule out data quality degradation as a confound, we examined 
head motion parameters between children and AYA groups across tasks. 
While children exhibited higher head motion than AYA, motion did not 
differ across tasks within either group, with no group × task interaction 
(see Supplementary Results). We also calculated temporal signal-to- 
noise ratio (tSNR) (Krüger and Glover, 2001) to assess potential 
age-related data quality differences. Analysis revealed minimal impact 
of tSNR on our main findings (see Supplementary Materials); conse
quently, tSNR was not included as a covariate in main analyses

2.4. ROI selection

Our math-related brain network included 11 bilateral brain regions 
consistently activated during numerical cognition and learning in chil
dren (Butterworth and Walsh, 2011; De Smedt et al., 2011; Cho et al., 
2012; Qin et al., 2014; Hannagan et al., 2015; Nieder, 2016; Piazza and 
Eger, 2016; Arsalidou et al., 2017; Peters and Smedt, 2017), which 
included 9 bilateral cortical regions identified using Neurosynth 
(Yarkoni, Poldrack et al., 2011)-based meta-analysis, using term 
“arithmetic.” The cortical regions included: bilateral intraparietal sul
cus, superior parietal lobule, anterior insula, middle frontal gyrus, 
inferior frontal gyrus, dorsal medial prefrontal cortex, frontal eye field, 
inferior temporal gyrus, and lateral occipital cortex. In addition, bilat
eral MTL and basal ganglia regions, shown to be important for learning 
math facts (De Smedt et al., 2011; Cho et al., 2012; Qin et al., 2014; 
Peters and Smedt, 2017) and procedural knowledge in arithmetic (Geary 
and Hoard, 2001; Rivera et al., 2005; Supekar et al., 2013) in children, 
were included. The hippocampus and the caudate, the primary region of 
the MTL and the basal ganglia (Packard and Knowlton, 2002), respec
tively, were identified from Neuroquery (Dockes et al., 2020)-based 
meta-analysis, using terms “declarative memory” and “procedural 
memory.” In addition to these 22 math-related brain regions, we 
included the left angular gyrus from the most recent meta-analytic work 
by Sokolowski et al. (2023) to consider its prominent role in number and 
arithmetic processing.

2.5. MDSI model for estimating causal interactions from fMRI data

MDSI estimates context-dependent causal interactions between 
multiple brain regions in latent quasi-neuronal states while accounting 
for variations in hemodynamic responses in these regions. MDSI has 
been validated using extensive simulations (Ryali et al., 2011; Ryali 
et al., 2016) and has been successfully applied to our previous studies 
(Cai et al., 2021; Cho et al., 2012). MDSI models the multivariate fMRI 
time series by the following state-space equations: 
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s(t) =
∑J

j=1
vj(t)Cjs(t − 1)+ w(t) (1) 

xm(t) = [sm(t) sm(t − 1)….sm(t − L + 1) ]́ (2) 

ym(t) = bmΦxm(t)+ em(t) (3) 

In Eq. (1), s(t) is a M × 1 vector of latent quasi-neuronal signals at 
time t of M regions, Cj is an M × M connection matrix ensued by 
modulatory input vj(t), J is the number of modulatory inputs. The non- 
diagonal elements of Cj represent the coupling of brain regions in the 
presence of modulatory input vj(t). Cj(m, n) denotes the strength of 
causal connection from n-th region to m-th region for j-th type stimulus. 
Therefore, latent signals s(t) in M regions at time t is a bilinear function 
of modulatory inputs vj(t), corresponding to deviant or standard stim
ulus, and its previous state s(t-1). w(t) is an M × 1 state noise vector 
whose distribution is assumed to be Gaussian distributed with covari
ance matrix Q(w(t) ∼ N(0,Q)). Additionally, state noise vector at time 
instances 1,2,….,T(w(1), w(2)…w(T)) are assumed to be identical and 
independently distributed (iid). Eq. (1) represents the time evolution of 
latent signals in M brain regions. More specifically, the latent signals at 
time t, s(t), is expressed as a linear combination of latent signals at time 
t-1, external stimulus at time t (u(t)), bilinear combination of modula
tory inputs vj(t), j = 1,2..J and its previous state, and state noise w(t).
The latent dynamics modeled in Eq. (1) gives rise to observed fMRI time 
series represented by Eqs. (2) and (3).

We model the fMRI time series in region “m” as a linear convolution 
of hemodynamic response function (HRF) and latent signal sm(t) in that 
region. To represent this linear convolution model as an inner product of 
two vectors, the past L values of sm(t) are stored as a vector. xm(t) in Eq. 
(2) represents an L × 1 vector with L past values of latent signal at m-th 
region.

In Eq. (3), ym(t) is the observed BOLD signal at t of m-th region. Φ is a 
p × L matrix whose rows contain bases for HRF. bm is a 1 × p coefficient 
vector representing the weights for each basis function in explaining the 
observed BOLD signal ym(t). Therefore, the HRF in m-th region is rep
resented by the product bmΦ. The BOLD response in this region is 
obtained by convolving HRF (bmΦ) with the L past values of the region’s 
latent signal (xm(t)) and is represented mathematically by the vector 
inner product bmΦxm(t). Uncorrelated observation noise em(t) with 
zero mean and variance σ2

m is then added to generate the observed 
signal ym(t). em(t) is also assumed to be uncorrelated with w(τ), at all t 
and τ. Eq. (3) represents the linear convolution between the embedded 
latent signal xm(t) and the basis vectors for HRF. Here, we use the ca
nonical HRF and its time derivative as bases, as is common in most fMRI 
studies.

Eqs. (1)–(3) together represent a state-space model for estimating the 
causal interactions in latent signals based on observed multivariate fMRI 
time series. Furthermore, the MDSI model also takes into account vari
ations in HRF as well as the influences of modulatory and external 
stimuli in estimating causal interactions between the brain regions.

Estimating causal interactions between M regions specified in the 
model is equivalent to estimating the parameters Cj, j = 1,2..J. In order 
to estimate Cj’s, the other unknown parameters Q, {bm}

M
m=1 and 

{
σ2

m
}M

m=1 

and the latent signal {s(t)}T
t=1 based on the observations {ys

m(t)}
M,S
m=1,s=1,t 

= 1,2..T, where T is the total number of time samples and S is number of 
subjects, needs to be estimated. We use a variational Bayes approach 
(VB) for estimating the posterior probabilities of the unknown param
eters of the MDSI model given fMRI time series observations for S 
number of subjects. The statistical significance of the parameters is 
assessed by examining the posterior probabilities of the parameters Cj, j 
= 1,2..J at a given level of significance.

2.6. State-space analysis of dynamic causal interactions

To prepare data for MDSI analysis, the fMRI time-series from each 
ROI and participant were first linearly de-trended and then normalized 
by its standard deviation. For all ROIs, time-series were extracted using 
the MarsBar toolbox in SPM12. Spherical ROIs were defined as the sets 
of voxels contained in 6 mm (diameter) spheres centered on the MNI 
coordinates of each ROI. MDSI was applied to estimate directed causal 
interactions among 23 nodes separately in the three tasks (non-sym
bolic, symbolic, arithmetic) and two groups (children, AYA).

To characterize the causal network interactions generated by MDSI, 
we first evaluated net causal influences of each node and determined 
causal outflow from each node in the three tasks and two groups. Spe
cifically, we computed the outflow degree of each node in each task and 
participant by subtracting averaged inflow weights (all the input con
nections to a node from all other nodes) from averaged outflow weights 
(all the output connections from a node to all other nodes). The outflow 
degree was referred as the net outflow degree (NOD) of each node.

2.7. Graph-theoretical analysis

Additionally, we computed betweenness centrality of each node in 
each task and participant. Betweenness centrality measures how often a 
node lies on the shortest path between all pairs of nodes in a network. 
While a node with high degree has many direction connections, a node 
with high betweenness centrality acts as a bridge between other nodes in 
the network (Rubinov and Sporns, 2010).

2.8. Multivariate classification analysis of dynamic causal interactions 
between groups and between tasks

To determine whether causal networks associated with the three 
tasks differ between children and AYA during each task, we used the 
causal network patterns in the two groups. The dynamic causal inter
action patterns – MDSI weights of 253 pairs of anatomical regions – were 
used as the input (features) to a linear logistic regression classifier with 
Elastic Net. The Elastic Net combined feature elimination from Lasso and 
feature coefficient reduction from Ridge, and as a result, features with 
low importance were assigned zero weights. K-fold cross-validation (K =
4) was used to measure the performance of the classifier in dis
tinguishing children and AYA. In k-fold, one-fold is used for testing the 
classifier that is trained using the remaining k-1 folds. This process is 
repeated K times. These analyses were performed using the scikit-learn 
package (https://scikit-learn.org/), which is a python-based package for 
machine learning. Permutation tests (5000 permutations of class labels) 
were conducted to arrive at p-values associated with classification 
accuracy.

To examine whether causal networks associated with the three tasks 
differ in each group, we applied the aforementioned analysis to the 
MDSI estimated causal networks during the arithmetic, symbolic, and 
non-symbolic tasks for each group.

2.9. Statistical analysis

To examine how task performance was modulated by group and task, 
we performed a two-way mixed measures analysis of variance (ANOVA) 
on accuracy and latency separately, with the between-subject factor 
Group (Children vs AYA) and within-subject factor Task (Non-symbolic 
vs Symbolic vs Arithmetic). Upon significant Group by Task interaction, 
post-hoc paired t-tests and two-sample t-tests were performed.

To identify causal outflow and inflow hubs, we performed a one- 
sample t-test on causal outflow for each node and results were FDR- 
corrected. In order to examine how outflow and inflow hubs were 
modulated by group and task, for each hub region we performed a two- 
way mixed measures ANOVA with the between-subject factor Group and 
within-subject factor Task. Upon significant Group by Task interaction, 
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post-hoc paired t-tests and two-sample t-tests were performed.
To examine how betweenness centrality was modulated by group 

and task, for each hub region we performed a two-way mixed measures 
ANOVA with the between-subject factor Group and within-subject factor 
Task. Upon significant Group by Task interaction, post-hoc paired t-tests 
and two-sample t-tests were performed.

2.10. Canonical correlation analysis (CCA)

We used canonical correlation to examine the relation between the 
NOD of the causal signaling hubs and children and AYA’s math skills. 
For the math skills, the participants were tested with the Woodcock- 
Johnson III Test of Cognitive Abilities (WJ III; Schrank, 2011). Specif
ically, we used the Calculation, Math Fluency, and Applied Problems 
subtests to test the arithmetic and math problem solving abilities. In the 
CCA, the NOD of the causal signaling hubs was entered as one set of 
variables and the three WJ III math subtest scores were entered as the 
second set of variables. The CCA tries to find the optimal linear com
bination (variate) of the two sets of variables that can maximize the 
correlation between the two variables. We set the CCA to estimate two 
variates for each variable. After the CCA converged, we calculated the 
Pearson correlation between the first variate of the NOD and the first 
variate of the math scores to get the CCA correlation coefficients. The 
CCA was first implemented in each age group and each task respectively. 
We then tested the slopes of the correlations. Specifically, we used the 
formula below to test the slope difference between children and AYA in 
each task respectively. 

t =
b1 − b2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

SE2
1 + SE2

2

√ (4) 

In this formula, b1 and b2 denote the slope of each correlation. SE1 

and SE2 denote the standard error of the slopes. The degree of freedom 
was the total sample (n = 78) minus 4 (two for the slopes and two for the 
intercepts), which is 74. We also combined the two age groups and 
tested the CCA between the NOD of the left MTL and left AG and math 
scores in all participants.

3. Results

3.1. Behavior

We examined whether children and adolescents and young adults 
(AYA) performed at different levels on arithmetic and symbolic and non- 
symbolic number comparison tasks (Fig. 1A-C). In a 2 (age: children, 
AYA) x 3 (task: arithmetic, symbolic number comparison, non-symbolic 
number comparison) analysis of variance (ANOVA), the main effect of 
age and task as well as interaction between age and task were significant 
for both accuracy and response times (RT) (Fig. 1D). Specifically, chil
dren were less accurate and slower than AYA across all tasks (accuracy: F 
(1,76) = 111.5, p < .001; RT: F(1,76) = 71.91, p < .001). Both age 
groups were most accurate in the symbolic number comparison task (F 
(2152) = 17.94, p < .001) and the slowest in the arithmetic task (F 
(2152) = 73.76, p < .001). The difference in accuracy or RT between 
children and AYA was greatest for the arithmetic task (accuracy: F 
(2152) = 21.44, p < .001; RT: F(2152) = 31.15, p < .001). These find
ings indicate that AYA performed better than children on all tasks, with 
the most prominent improvements on arithmetic problem solving.

3.2. Developmental changes in causal network interactions in arithmetic 
and number comparison tasks

To address our main question about whether causal network in
teractions during math problem solving change across development, we 
examined whether children and AYA showed different dynamic inter
action patterns in the brain network consisted of 23 regions of interest 

(ROIs) obtained from Neurosynth-based meta-analysis and previous 
empirical work (De Smedt et al., 2011, Cho et al., 2012, Qin et al., 2014, 
Arsalidou et al., 2017, Peters and Smedt, 2017, Supekar et al., 2021, 
Chang et al., 2022, Sokolowski et al., 2023) (see Methods and Fig. 1E). 
We applied a Logistic Regression classifier with the Elastic Net regula
rization in the multivariate dynamic state-space identification (MDSI) 
modeling to classify children and AYA in arithmetic, symbolic number 
comparison, and non-symbolic number comparison tasks (Fig. 1F; 
Fig. 2A-B, E-F, and I-J). We found that the classification accuracy was 
the highest in the arithmetic task (decoding accuracy = 76.97 %, per
mutation p < .001; Fig. 2C), followed by the non-symbolic number 
comparison task (decoding accuracy = 62.96 %, permutation p < .001; 
Fig. 2K) and the symbolic number comparison task (decoding accuracy =
56.45 %, permutation p < .001; Fig. 2G). Children and AYA differed 
more in the dynamic interaction in the math-related brain network for 
more complex task (arithmetic) and were less distinguishable for 
simpler tasks (number comparison).

3.3. Causal network dynamics differ between math tasks

We applied Logistic Regression classifier with Elastic Net to examine 
whether the causal dynamics among the math brain network differed 
between the three tasks in children and AYA respectively. We found 
successful between task decoding in children (decoding accuracy =
38.54 %, permutation p < .001; chance level is 33 %) and AYA (decoding 
accuracy = 46.34 %, permutation p < .001; chance level is 33 %), sug
gesting that causal network dynamics differed between math tasks in 
both children and AYA. The decoding accuracy seems lower in children 
than AYA, which might suggest that the network dynamics are less 
distinguishable when the math skills are premature.

3.4. Causal signaling hubs in the arithmetic task

Our next goal was to examine whether the MTL or any other brain 
region plays the role of causal signaling hub during arithmetic task 
performance. Specifically, we measured the causal outflow of each brain 
region in the MDSI model by estimating the sum of absolute values of 
causal interactions from the brain region of interest to all other brain 
regions. Similarly, the causal inflow of each brain region in the model 
was measured as the sum of absolute values of causal interactions from 
all other brain regions into the brain region of interest. The net outflow 
degree (NOD) was estimated as the causal outflow minus the causal 
inflow. Positive values indicated more outgoing (than incoming) in
teractions and negative values indicated more incoming (than outgoing) 
interactions. Here, we defined brain regions with significantly higher 
than zero NOD as causal signaling hubs.

A repeated measures ANOVA of age (children, AYA) x ROIs showed a 
significant main effect of ROI on the NOD during the arithmetic task (F 
(22, 1672) = 1.93, p = .006; Fig. 3A), which suggests the outflow-inflow 
profile was different across all regions. No significant main effect of age 
or age by ROI interaction was observed (F(1,76) < .001, p > .99).

3.4.1. The role of MTL as a causal signaling hub
We next examined the NOD of the MTL in each age group (children 

and AYA). In children, planned t-test yielded no significant NOD in the 
left or right MTL during the arithmetic task (ts < 1.4, ps >.16; Fig. 3A, 
left panel). In AYA, we found that the left MTL had positive NOD in the 
math-related brain network during the arithmetic task (t(45) = 3.12, 
p = .003; Fig. 3A, middle panel). Additional analysis of the NOD in the 
right MTL was not significantly greater than zero (t(45) = 1.63, 
p = .10). A direct comparison of the NOD between children and AYA 
showed a significant age difference in the left MTL (t(1,76) = 3.10, 
p = .003; Fig. 3A, right panel). These findings suggest developmental 
changes in the causal dynamic interactions of the left MTL from 
receiving more interaction in childhood to causal signaling other regions 
in the math-related brain network in adolescence and young adulthood.
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3.4.2. The role of AG and other math-related brain regions as causal 
signaling hubs

While the MTL was found to be a causal signaling hub in AYA, the left 
AG was a causal signaling hub in both children (t(31) = 2.38, p = .02; 
Fig. 3A, left panel) and AYA (t(45) = 4.06, p < .001; Fig. 3A, middle 
panel). The NOD in the left AG was not significantly different between 
children and AYA (t(1,76) = -0.71, p = 0.48; Fig. 3A, right panel). No 
other brain regions were identified as causal signaling hub in either 
group (ts<1.63, FDR corrected ps >.32).

These findings suggest that the MTL emerged as a causal signaling 
hub during arithmetic task performance later in development, whereas 
the left AG was a stable causal signaling hub across developmental 
stages.

3.5. Causal signaling hubs in the symbolic number comparison task

Our next goal was to extend the examination of the causal signaling 
hubs to more fundamental number comparison tasks. We first examined 
the symbolic number comparison task. In a repeated measures 2 (age: 
children, AYA) x 23 (23 ROIs) ANOVA, the main effect of ROI on the 
NOD was significant (F(22, 1672) = 1.65, p = .03; Fig. 3B). No signifi
cant main effect of age or age by ROI interaction was observed (Fs <
1.33, ps >.14).

3.5.1. The role of MTL as a causal signaling hub
We next examined the NOD of the MTL in each age group and 

assessed developmental difference. In children, neither the left or right 
MTL showed the NOD significantly greater than zero during the sym
bolic number comparison task, though the MTL had positive NOD (ts <
1.50, ps >.30; Fig. 3B, left panel). In AYA, the left MTL was the causal 
signaling hub (t(45) = 3.44, p = .001; Fig. 3B, middle panel). The NOD 
in the right MTL, while positive, was not greater than zero (t(45) = 1.71, 
p = .09). No significant difference between children and AYA was 
observed in the NOD of either the left or right MTL (ts < 1.14, ps >.25; 
Fig. 3B, right panel). These findings suggest a weaker developmental 
difference in the MTL as the causal signaling hub for the symbolic 
number comparison, compared to the arithmetic task, which showed a 
significant developmental difference.

3.5.2. The role of AG and other math-related brain regions as causal 
signaling hubs

The AG was not identified as causal signaling hub in either group (ps 
>.30). In children, several other brain regions had positive NOD, 
including the right frontal eye field, right dorsomedial prefrontal cortex, 
left lateral occipital cortex, and left inferior temporal gyrus. However, 
the NOD in these regions were not significantly greater than zero (ts<
2.01, FDR corrected ps>.34). In AYA, we did not find any other causal 
signaling hub, beyond the left MTL, with significantly greater than zero 

Fig. 2. Dynamic interactions among the regions in the math brain network in differed between children (left column) and AYA (right column). In each heatmap, each column 
represents the outgoing interaction from one region to other regions. Each row represents the incoming interaction from other regions into one region. The bar plots 
on the top and right side of each heat map show the sum of each column and row. Logistic regression classifications with Elastic Net regularization indicated 
successful decoding between children and AYA in all tasks. A-B. The MDSI causal dynamic matrix in (A) children and (B) AYA in the arithmetic task. C. The Logistic 
regression classification accuracy in the arithmetic task. D. The lower triangle of the MDSI causal dynamic matrix has higher summed value than the upper triangle in 
both children (left panel) and AYA (right panel) in the arithmetic task, indicating asymmetric outgoing and incoming causal interactions. E-F. The MDSI causal 
dynamic matrix in (E) children and (F) AYA in the symbolic number comparison task. G. The Logistic regression classification accuracy in the symbolic number 
comparison task. H. The lower triangle of the MDSI causal dynamic matrix has higher summed value than the upper triangle in both children (left panel) and AYA 
(right panel) in the symbolic number comparison task. I-J. The MDSI causal dynamic matrix in (I) children and (J) AYA in the non-symbolic number comparison task. 
K. The Logistic regression classification accuracy in the non-symbolic number comparison task. L. The lower triangle of the MDSI causal dynamic matrix has higher 
summed value than the upper triangle in both children (left panel) and AYA (right panel) in the non-symbolic number comparison task. ***p < .005.
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NOD (ts < 1.70, FDR corrected ps >.43).
These findings suggest that the MTL was as a causal signaling hub 

during symbolic number comparison later in development. However, 
direct comparison between age groups indicated that developmental 
changes in the MTL was not significant.

3.6. Causal signaling hubs in the non-symbolic number comparison task

Finally, we investigated the causal signaling hubs in the non- 
symbolic number comparison task. The 2 (age: children, AYA) x 23 
(23 ROIs) repeated measures ANOVA yielded a main effect of ROI on the 
weighted causal outflow (F(22,1672) = 1.94, p = .005; Fig. 3C). No 
significant main effect of age or age by ROI interaction was observed (Fs 
< 0.85, ps >.66).

3.6.1. The role of MTL as a causal signaling hub
We next examined the NOD of the MTL in each age group and 

assessed developmental difference. In children, the NOD in the left MTL, 
while positive, was not significantly higher than zero (t(31) = 1.39, 
p = .17). The NOD in the right MTL was also not significantly higher 
than zero (t(31) = -.65, p = .51). In AYA, bilateral MTL were found as 
the causal signaling hubs (left MTL: t(45) = 3.37, p = .002; right MTL: t 
(45) = 2.21, p = .03; Fig. 3C, middle panel). The NOD in bilateral MTL 
was not significantly different between children and AYA (ts <1.89, ps 
>.06; Fig. 3C, right panel). These findings suggest a weaker develop
mental difference in the MTL as the causal signaling hub for the non- 
symbolic number comparison, compared to the arithmetic task, which 
showed a significant developmental difference.

Fig. 3. Net outflow and inflow degree in children and AYA in arithmetic and symbolic and non-symbolic number comparison tasks. A. Net outflow and inflow pattern 
in children and AYA in the arithmetic task. The left AG had significant net outflow degree (NOD) than other brain regions in children (left panel). In AYA, the left MTL 
and AG were identified as causal signaling hubs (middle panel). Significant age difference was observed in the left MTL (right panel). B. Net outflow and inflow pattern 
in children and AYA in the symbolic number comparison task. In children, the outflow causal signaling was distributed across regions in the right MTL, right DMPFC, 
right FEF, left ITG, and left LOC (left panel). However, none of these regions appeared to have NOD significantly higher than zero. The left MTL played a role as an 
outflow hub in AYA (middle panel). No main effect of age or age by ROI interaction was found (right panel). C. Net outflow and inflow pattern in children and AYA in 
the non-symbolic number comparison task. In children, the left FEF, left MTL, and right IFG had relatively greater outflow causal signaling than other regions (left 
panel). However, none of these regions appeared to have NOD significantly higher than zero. The bilateral MTL were the outflow hubs in AYA (middle panel). No main 
effect of age or age by ROI interaction was found (right panel). Note: In the left and middle column, bars pointing outside the ring represent outflow and bars pointing 
inside the ring represent inflow. In the right column, bars pointing outside the ring represent network outflow greater in AYA than children and bars pointing inside 
the ring represent network outflow greater in children than AYA. AG: angular gyrus. DMPFC: dorsomedial prefrontal cortex. FEF: frontal eye field. IFG: inferior 
frontal gyrus. ITG: inferior temporal gyrus. LOC: lateral occipital cortex. MTL: medial temporal lobe. *p < .05, **p < .01.
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3.6.2. The role of AG and other math-related brain regions as causal 
signaling hubs

The AG was not identified as causal signaling hub in either group (ps 
>.40) in the non-symbolic number comparison task. No other brain 
regions had significantly higher than zero NOD in either children or AYA 
(ts< 2.23, FDR corrected ps>.19). No significant difference between 
groups was observed for the NOD in the rest of the ROIs (ts<2.07, FDR 
corrected ps>.73).

Together, our causal signaling hub analysis shows that the left MTL 
was a stable causal signaling hub in AYA across arithmetic and symbolic 
and non-symbolic number comparison tasks. The right MTL was iden
tified as the causal signaling hub in AYA only in the non-symbolic 
number comparison task. In children, the NOD in the bilateral MTL 
was not significantly higher than zero in any of the tasks. The devel
opmental difference in the NOD of the MTL was significant in the 
arithmetic task but not in the symbolic or non-symbolic number com
parison task, which suggests the differential role of the MTL across 
development was context dependent. Moreover, we observed that the 
left AG was a major causal signaling hub in the arithmetic task but not in 
symbolic or non-symbolic comparison tasks in both children and AYA, 
which is consistent with findings of the involvement of AG in arithmetic 
tasks (Grabner et al., 2009; Sokolowski et al., 2023).

3.7. Outflow and inflow in the left MTL during arithmetic and number 
comparison tasks in children and AYA

Our next series of analyses examined the level of outflow and inflow 
for each task in each age group in the left MTL, which was consistently 
shown as the causal signaling hub across arithmetic and number com
parison tasks in AYA. We calculated the outgoing and incoming dynamic 
interaction in the MTL and examined whether the outflow/inflow 
pattern differed between age groups in the three tasks (Figs. 4 and 5).

3.7.1. Outflow in the left MTL
We found a significant age difference between children and AYA 

across the tasks for the outflow in the left MTL (F(1,76) = 7.28, 
p = .008). No significant main effect of task (F(2152) = .37, p > .05) or 
task by age interaction (F(2152) = .38, p > .05) was found. Follow-up t- 
test showed a significant developmental difference in the arithmetic 
verification task (t(1,76) = 2.53, p = .01). Children had higher outflow 
in the left MTL than AYA in the arithmetic task (Fig. 4D). The devel
opmental differences in the symbolic and non-symbolic number com
parison tasks did not reach significance (ts <1.65, ps >.10).

3.7.2. Inflow in the left MTL
For the inflow in the left MTL, a significant main effect of age was 

observed (F(1,76) = 22.79, p < .001). We also found an age by task 
interaction (F(2152) = 3.97, p = .02). The age difference was larger in 
the arithmetic verification task than in symbolic or non-symbolic 
number comparison tasks. No significant main effect of task (F(2.152) 
= 1.13, p > .05) was observed. Follow-up t-tests showed significant 
developmental differences in all three tasks (ts > 2.13, ps <.04). Chil
dren had higher inflow than AYA in the left MTL in all three tasks 
(Fig. 5D).

Combining with the finding that the NOD (i.e. outflow – inflow) in 
the left MTL was lower in children than in AYA, especially in the 
arithmetic task, these results suggest that both outflow and inflow are 
enhanced in children, leading to diminished net outflow in the left MTL.

3.8. Outflow and inflow in the left AG during arithmetic and number 
comparison tasks in children and AYA

As the left AG was identified as the outflow hub in the arithmetic task 
in both age groups, we examined the levels of outflow and inflow in the 
left AG in both age groups in each task.

Fig. 4. Outflow causal signaling from all the regions of interest into the left MTL (purple) and left AG (mint green). A-C. The outflow causal signaling in the left MTL 
and left AG in (A) arithmetic, (B) symbolic number comparison, and (C) non-symbolic number comparison tasks in children. D. Children had significantly higher 
outflow than AYA in the left MTL in the arithmetic task. E-G. The outflow causal signaling in the left MTL and left AG in (E) arithmetic, (F) symbolic number 
comparison, and (G) non-symbolic number comparison tasks in AYA. H. Children had significantly higher outflow than AYA in the symbolic number comparison task. 
*p < .05, **p < .01, n.s., not significant, p > .05.
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3.8.1. Outflow in the left AG
Similar to the left MTL, we found a significant age difference be

tween children and AYA across all tasks for the outflow in the left AG (F 
(1,76) = 5.60, p = .02; Fig. 4H). No significant main effect of task (F 
(2152) = 1.53, p > .05) or task by age interaction (F(2152)= 1.40, 
p > .05) was found. Follow-up t-tests showed a significant develop
mental difference in the symbolic number comparison task (t(1,76) 
= 2.75, p = .007). No significant developmental difference was 
observed in the arithmetic or non-symbolic number comparison tasks (t 
(1,76) = .60, p > .05).

3.8.2. Inflow in the left AG
For the inflow in the left AG, we found a significant main effect of 

task (F(2152) = 7.72, p < .005; Fig. 5H). The inflow in the left AG was 
lower in the arithmetic task than in number comparison tasks. No sig
nificant age effect (F(1,76) = 3.47, p = .07) or age by task interaction 
was found (F(2152) = 1.58, p > .05). Follow-up t-tests indicated a sig
nificant developmental difference in the symbolic number comparison 
task (t(1,76) = 2.11, p = .04). No significant developmental difference 
was observed in the non-symbolic number comparison task (t(1,76) 
= .04, p > .05) or the arithmetic task (t(1,76) = 1.85, p = .07).

These findings suggest enhanced outflow and inflow in the left AG in 
children than AYA, especially for the symbolic number comparison task.

3.9. Comparison of causal signaling of MTL and AG

As described above, the left MTL was a stable causal signaling hub in 
AYA in all three tasks (Fig. 3A-C, middle panel) and the left AG was a 
causal signaling hub in both children and AYA in the arithmetic verifi
cation task (Fig. 3A, left and middle panel). For the left MTL, children 
and AYA had different NOD in the arithmetic task (Fig. 3A, right panel) 
but not in the other two tasks. For the left AG, there was no significant 
difference between children and AYA regarding the NOD across the 
three tasks. To further examine these findings, we compared the NOD of 

the two regions in the two age groups across the three tasks (Fig. 6A & 
B).

A repeated measures ANOVA of task (arithmetic, symbolic number 
comparison, non-symbolic number comparison) x age (children, AYA) x 
ROIs (MTL, AG) yielded a significant age by ROI interaction (F(2455) 
= 7.62, p < .001). Specifically, the left MTL, but not the left AG, had 
higher NOD in AYA than in children across tasks (Fig. 6C). A significant 
task by ROI interaction (F(1, 456) = 4.64, p = .03) indicated that the left 
MTL had higher NOD than the left AG in the number comparison tasks 
but not in the arithmetic task across groups (Fig. 6D). There was also a 
significant main effect of ROI (F(1, 456) = 6.49, p = .01): The left MTL 
had overall higher NOD than the left AG (Fig. 6E). Finally, a significant 
main effect of task (F(2455) = 2.98, p = .052) indicated that the NOD 
across the left MTL and AG was overall highest in the arithmetic task 
(Fig. 6F).

Together, these findings suggest the developmental changes in the 
NOD occurred in the left MTL but not in the left AG. Furthermore, across 
age groups, the left MTL had higher NOD than the left AG, particularly 
for symbolic and non-symbolic number comparison tasks. Moreover, the 
role of the left AG as a hub in the arithmetic task regardless of age seems 
to suggest its domain specificity in arithmetic.

3.10. Comparison of MTL and AG node centrality

To further probe the differential network roles of the MTL and AG, 
we examined betweenness centrality of the left MTL and AG in children 
and AYA in arithmetic and symbolic and non-symbolic number com
parison tasks. Node betweenness centrality is a measure used in network 
analysis to quantify the importance of a node within a network 
(Newman, 2005). It is measured as the fraction of all shortest paths in 
the brain network that contain a certain region. Regions with high level 
of betweenness centrality means they are in many shortest paths.

We conducted a repeated measures ANOVA of task (arithmetic, 
symbolic number comparison, non-symbolic number comparison) x age 

Fig. 5. Inflow causal signaling from all the regions of interest into the left MTL (blue) and left AG (mint green). A-C. The inflow causal signaling in the left MTL and 
left AG in (A) arithmetic, (B) symbolic number comparison, and (C) non-symbolic number comparison tasks in children. D. On average, children had higher inflow in 
the left MTL than AYA across all three tasks. E-G. The inflow causal signaling in in the left MTL and left AG in (E) arithmetic, (F) symbolic number comparison, and 
(G) non-symbolic number comparison tasks in AYA. H. On average, children had higher inflow than AYA in the symbolic number comparison task. *p < .05, 
**p < .01, ***p < .005, n.s., not significant, p > .05.
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(children, AYA) x ROIs (MTL, AG), which revealed a significant age by 
ROI interaction (F(2455) = 4.50, p = .03; Fig. 7C) and a significant task 
by ROI interaction (F(2455) = 3.45, p = .03; Fig. 7D). Specifically, the 
left MTL, but not the left AG, had higher centrality in children than AYA 
across tasks (Fig. 7C). The left MTL had higher centrality than the left AG 
in the arithmetic task but not in number comparison tasks. In addition, 
we found a significant main effect of ROI (F(1456) = 19.21, p < .001; 
Fig. 7E), with left MTL having overall higher centrality than left AG. 
Finally, there was also a significant main effect of age (F(1456) = 7.59, 
p = .006; Fig. 7F), with children having higher overall centrality than 
AYA. Together, these results suggest a relatively stronger central role of 
the left MTL compared to the left AG across children and AYA and the 
developmental difference in the centrality of the left MTL, especially in 
the arithmetic task.

It is noteworthy that high levels of centrality in the left MTL were 
observed during arithmetic task for children, despite their low levels of 
NOD, compared to AYA. Combined with the observation of enhanced 
inflow and outflow in the left MTL in children, compared to AYA, during 
arithmetic task, these findings suggest that the MTL may play a central 
role in bidirectional causal interactions with the math-related brain 
network during arithmetic task performance in early childhood.

3.11. Causal signaling in the left MTL and AG correlate with standardized 
measures of math abilities

Finally, we examined whether NOD of the left MTL and AG during 
mathematical tasks are correlated with individual differences in stan
dardized measures of mathematical abilities. Mathematical achievement 
was assessed using the Calculation, Math Fluency, and Applied Problem 

subtests from the Woodcock Johnson III Tests of Achievement (Schrank, 
2011). Using canonical correlation analysis (CCA), we investigated the 
relationship between NOD measures and mathematical achievement 
scores separately for each age group and task.

In children, we found significant positive correlations between NOD 
and math achievement scores across all three tasks (Pearson rs >.38, 
p < .03). In contrast, these correlations were not significant in AYA 
(Pearson rs <.29, ps >.05). Although the correlation strengths appeared 
different between age groups, formal comparison of correlation slopes 
revealed no significant differences across the three tasks (ts <.46, ps 
>.65; see Methods).

When analyzing the combined sample, we found a significant posi
tive correlation between NOD and math achievement scores specifically 
in the arithmetic task (Pearson r = .31, p = .006; Fig. 8A). No significant 
correlations emerged for either the symbolic or non-symbolic number 
comparison tasks (Peason rs <.13, ps >.10; Fig. 8B & C). Analyses 
revealed that the significant correlation between combined hub prop
erties and mathematical achievement was primarily driven by the left 
MTL (left MTL: Pearson r = .25, p = .02) rather than the left AG (Pearson 
r = .20, p = .08; S4 Figure).

These findings indicate that the hub-like properties of the left MTL 
and AG correlated with individual differences in mathematical abilities. 
Notably, this brain-behavior relationship was most prominent during 
arithmetic processing, suggesting that network organization during 
more complex mathematical operations may be particularly important 
for mathematical competence.

Fig. 6. The left MTL is a stable causal hub across tasks while the left AG is a causal hub in the arithmetic task in AYA. A. Net outflow degree (NOD) of the left MTL 
was significantly greater in AYA than children for the arithmetic task. Furthermore, AYA had consistently positive NOD in all three tasks, whereas children had 
overall negative NOD for the arithmetic task. B. The NOD of the left AG was not significantly different between children and AYA for any task. C. Across the three 
tasks, the left MTL had higher NOD in AYA than in children. No significant difference was observed between children and AYA for the NOD in the left AG. D. The 
difference in NOD between the left MTL and AG was significant for symbolic and non-symbolic number comparison tasks. E. The left MTL overall had higher NOD 
than the left AG across tasks and age groups. F. Overall NOD across the left AG and MTL was higher in the arithmetic task than the two number comparison tasks. 
*p < .05, **p < .01, n.s., not significant, p > .05.
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4. Discussion

We examined causal dynamics of memory circuits within a distrib
uted brain network implicated in mathematical cognition and compared 

signaling patterns between children and adolescents and young adults 
(AYA). Our findings reveal novel insights into how mathematical 
cognition emerges through dynamic interactions between multiple brain 
systems, with memory circuits in the MTL and AG playing distinct 

Fig. 7. The left MTL showed developmental difference in betweenness centrality in the network of regions of interest in the arithmetic task. A. The betweenness 
centrality of the left MTL was significantly higher in children than AYA in the arithmetic task. B. The left AG showed no significant difference in betweenness 
centrality between children and AYA in all three tasks. C. Children and AYA differed in betweenness centrality in the left MTL across the three tasks. Such age 
difference was not seen in the left AG. D. The left MTL showed higher betweenness centrality than the left AG in the arithmetic task. E. The left MTL overall had 
higher betweenness centrality than the left AG across tasks and age groups. F. Overall betweenness centrality across the left MTL and AG was higher in children than 
AYA. **p < .01, ***p < .005, n.s., not significant, p > .05.

Fig. 8. Network hub properties predict mathematical achievement during arithmetic processing. Canonical correlation analysis between network outflow degree 
(NOD) of the left MTL and AG and standardized mathematical achievement scores. A. Significant positive correlation between NOD and mathematical achievement in 
the arithmetic verification task. B. No significant correlation between NOD and mathematical achievement in the symbolic number comparison task. C. No significant 
correlation between NOD and mathematical achievement in the non-symbolic number comparison task. NOD reflects the difference between outgoing and incoming 
causal interactions for each region (see Fig. 1 and Methods). Mathematical achievement was assessed using the Calculation, Math Fluency, and Applied Problems 
subtests from the Woodcock Johnson III Tests of Achievement. Children are represented by circles, AYA by triangles. n.s., not significant, p > .05.
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developmental roles. The MTL undergoes a significant developmental 
shift, transitioning from exhibiting heightened, context-dependent, in
teractions in childhood to serving as a stable causal hub in adulthood 
across multiple mathematical tasks. In contrast, the AG maintains 
consistent hub-like properties specifically during arithmetic processing 
throughout development, suggesting early specialization for fact 
retrieval. These contrasting developmental trajectories indicate that 
different memory systems mature along distinct timelines to support 
mathematical processing.

Notably, both regions show heightened bidirectional interactions in 
childhood, particularly during arithmetic processing, suggesting less 
efficient network organization early in development. These patterns of 
interaction become more refined with age, with the MTL emerging as a 
domain-general hub for mathematical processing while the AG main
tains its specialized role in arithmetic. Furthermore, the strength of these 
network properties correlates with individual differences in mathe
matical abilities, especially in arithmetic problem solving, highlighting 
their particular importance during mathematical skill acquisition.

These results challenge traditional views of mathematical cognition 
by demonstrating that memory systems play crucial but distinct roles in 
mathematical processing, with their contributions evolving significantly 
across development. This new understanding suggests that mathemat
ical cognition relies on the coordinated maturation of multiple memory 
systems, each supporting different aspects of mathematical thinking at 
different developmental stages.

4.1. Developmental changes in causal network dynamics are task 
dependent

To quantify developmental changes in network dynamics, we con
ducted a classification analysis of network patterns between children 
and AYA across the three tasks. Our analysis revealed that the classifi
cation accuracy of network dynamics between children and AYA was 
highest in the arithmetic task (76.97 %), followed by the non-symbolic 
number comparison task (62.96 %), and lowest in the symbolic number 
comparison task (56.45 %).

The observed differences in network dynamics across tasks (arith
metic > non-symbolic > symbolic comparison) underscore the impor
tance of considering task demands when studying mathematical 
cognition. The arithmetic task, which relies more heavily on fact 
retrieval and procedural knowledge, elicited the greatest differences 
between age groups. This finding supports the idea that brain network 
organization becomes more specialized and efficient with development 
and experience (Menon, 2013; Supekar et al., 2013). The lower classi
fication accuracy in symbolic and non-symbolic number comparison 
tasks suggests that the neural processes underlying these more basic 
numerical skills may mature earlier or require less extensive network 
reorganization. The gradient of developmental differences across tasks 
highlights the dynamic nature of brain network development in math
ematical cognition and emphasizes the value of examining multiple 
aspects of mathematical cognition to gain a comprehensive under
standing of the developing mathematical brain.

Our study also demonstrates the utility and power of the multivariate 
dynamic state-space identification model in estimating causal in
teractions between distributed brain regions involved in math cognition. 
This advanced analysis approach allowed us to examine large-scale 
network dynamics, significantly extending beyond the limitations of 
our previous intracranial EEG study (Das and Menon, 2022), which were 
constrained by small sample sizes and limited spatial coverage. Our 
state-space model provides a more comprehensive understanding of 
how different brain regions interact during mathematical processing and 
how these interactions evolve with development. By capturing the 
directional flow of information between brain regions, this method of
fers a unique window into the causal architecture of the mathematical 
brain network.

4.2. MTL is a causal network hub in adolescents and young adults (AYA) 
but not in children

Next, we examined the role of the MTL as a causal signaling hub 
across different age groups and tasks. Our findings confirm and extend 
previous evidence from intracranial EEG studies suggesting that the 
hippocampus serves as a major causal signaling hub in arithmetic pro
cessing (Das and Menon, 2022). These effects were observed only in AYA 
but not in children. We observed that the left MTL consistently showed 
strong outflow across all three tasks in AYA, indicating its role as a 
general causal signaling hub in numerical processing.

In contrast to the left MTL, the right MTL showed stronger outflow 
only in the non-symbolic number comparison task, suggesting potential 
domain specificity of the right MTL. Non-symbolic number comparison 
involves spatial representations of quantity, which has been associated 
with the right hemisphere processes (Holloway et al., 2010). This 
hemispheric also aligns with the general observation that symbolic 
processing may engage the left MTL more prominently (Hocking et al., 
2009; Price, 2012; Whitney et al., 2009). The verbal component in the 
arithmetic and symbolic number comparison tasks may engage the left 
MTL more consistently across participants, whereas both hemispheres 
may be similarly engaged in the non-symbolic task without a language 
component. This lateralization could reflect the dominant role of the left 
hemisphere in language processing and symbolic representation, which 
are crucial for arithmetic and symbolic number processing. This finding 
advances our understanding of how different aspects of numerical 
cognition may engage distinct MTL neural circuits.

4.3. Developmental changes in MTL causal network dynamics

We next compared the MTL network dynamics between children and 
AYA. We first focused on direct comparison of net outflow (outflow – 
inflow) reflecting a causal signaling hub between the two groups and 
then compared outflow and inflow separately between the groups. A 
striking finding of our study is the developmental change observed in the 
MTL. In children, we did not find net causal outflow signaling in the MTL 
to be significant in any of the three tasks. Moreover, the direction of net 
outflow in the MTL changed across tasks, suggesting unstable and 
context-dependent causal signaling in childhood.

Surprisingly, additional analysis revealed that with outflow and 
inflow measures taken separately, both outflow and inflow were 
enhanced in children, leading to diminished net outflow degree (i.e., 
outflow - inflow) in all three tasks. For the outflow measure, the largest 
developmental difference was observed in the arithmetic task (effect size 
d =.77), followed by the symbolic (d =.51) and non-symbolic (d =.49) 
number comparison tasks. The inflow followed the same trend, where 
the largest developmental difference was seen in the arithmetic task (d =
1.74), followed by symbolic (d =.78) and non-symbolic (d =.65) number 
comparison tasks. These results suggest that causal signaling both from 
and to the MTL may be undergoing maturation in children, exhibiting a 
profile of hyper-causal signaling in both outflow and inflow directions, 
leading to reduced hub-like properties when compared to AYA.

The hyper-signaling observed in the MTL in children, characterized 
by increased bidirectional causal interactions, may reflect a less effi
cient, more diffuse pattern of information processing. This could be 
indicative of a developmental stage where the MTL may be highly plastic 
and responsive, but not yet optimized for efficient mathematical per
formance. The greatest developmental difference observed in the 
arithmetic task suggests that this potential developmental change is 
particularly pronounced for more complex mathematical operations 
that may rely more on memory retrieval.

Our findings align with previous studies (Qin et al., 2014; Rivera 
et al., 2005), which found higher hippocampal activity in arithmetic 
tasks in children compared to adults. The gradual transition from this 
heightened bidirectional interaction state in childhood to a more 
directed, efficient causal signaling hub in adolescence and adulthood 
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may represent a key aspect of mathematical skill development. This shift 
could reflect the refinement of distributed neural circuits leading to 
more specialized and efficient information flow within the mathematical 
cognition network.

4.4. AG serves as a causal network hub only during arithmetic processing

Given the extant literature implicating the AG in mathematical 
cognition, we examined its role as a potential causal signaling hub across 
our three tasks and two age groups. Analysis of net outflow degree (i.e. 
outflow – inflow) revealed that the left AG functions as a strong causal 
signaling hub in both children and AYA specifically during arithmetic, 
but not during symbolic or non-symbolic number comparison tasks. This 
task specificity aligns with previous research showing AG involvement 
in arithmetic processing in both children and adults (Polspoel et al., 
2017; Grabner et al., 2013), suggesting its specialized role in more 
complex mathematical operations that rely on fact retrieval and se
mantic memory processing.

Notably, while the net outflow in the AG showed no developmental 
differences, suggesting early establishment of its hub-like properties in 
arithmetic processing, the pattern of interactions revealed interesting 
developmental changes. Children exhibited higher levels of both 
outflow and inflow in the left AG compared to AYA during arithmetic 
and symbolic number comparison tasks, but not during non-symbolic 
number comparison. This pattern of selective difference between age 
groups suggests that developmental changes in AG may be specifically 
related to symbolic information processing. The increased bidirectional 
causal interactions observed in children might reflect less efficient, more 
diffuse processing, paralleling our observations in the MTL.

4.5. Comparing developmental changes in network dynamics of the MTL 
and AG

Our analysis revealed that both the left MTL and left AG function as 
causal signaling hubs, but with distinct developmental trajectories and 
task specificities. We additionally compared NOD and betweenness 
centrality in these regions, collapsed across age groups and tasks. The 
results revealed a striking dissociation: while the left MTL showed strong 
developmental differences in both NOD and centrality measures, the left 
AG maintained consistent network properties in all tasks across devel
opment (Fig. 6C and Fig. 7C).

The developmental differences in the left MTL were particularly 
pronounced during arithmetic but not during symbolic or non-symbolic 
number comparison tasks (Fig. 6A and Fig. 7A). This task-specific 
pattern provides compelling evidence that the maturation of MTL 
function in mathematical processing is context-dependent. Specifically, 
the MTL appears to undergo more substantial developmental changes in 
its network role during complex mathematical operations that require 
fact retrieval and computation, compared to basic numerical compari
son tasks.

This dissociation between the MTL and AG suggests different 
developmental trajectories for distinct memory systems supporting 
mathematical cognition. While the AG appears to establish its role in 
arithmetic early and maintain it through development, the MTL shows a 
more complex pattern of maturation, particularly in its support of 
advanced mathematical operations.

4.6. Relation between causal network dynamics and mathematical 
abilities

Canonical correlation analysis revealed distinct patterns in how 
network properties relate to mathematical abilities across development 
and task contexts. In children, we found significant correlations between 
the NOD of the left MTL and AG and performance on standardized 
measures of calculation, arithmetic fluency, and applied mathematical 
problem solving across all tasks. In contrast, AYA showed no significant 

correlations between these network properties and mathematical 
achievement. Although the correlation patterns appeared differently 
between age groups, formal comparison of correlation slopes revealed 
no significant developmental differences.

When analyzing the combined sample, we found that NOD correlated 
with mathematical achievement specifically during arithmetic verifi
cation, but not during symbolic or non-symbolic number comparison. 
Moreover, the NOD of the left MTL showed strong correlations with 
standardized measures of math ability. These findings extend previous 
research on the relationship between MTL and AG structure, function, 
and mathematical abilities, with a stronger emphasis on the importance 
of the left MTL (Abreu-Mendoza et al., 2022; De Smedt et al., 2011; 
Grabner et al., 2009a,b; Supekar et al., 2013; Wilkey et al., 2018). The 
task-specific nature of these relationships aligns with evidence that 
symbolic arithmetic processing is particularly predictive of formal 
mathematical skills (Brankaer et al., 2014; Fazio et al., 2014; Lyons 
et al., 2014; Menon and Chang, 2021).

These brain-behavior relationships suggest that the transition from 
heightened interactions in childhood to more stable, efficient configu
rations in adulthood may represent a key mechanism in mathematical 
development (Abreu-Mendoza et al., 2022; Jolles et al., 2016; Menon 
and Chang, 2021; Price et al., 2018; Qin et al., 2014; Rosenberg-Lee 
et al., 2015). Understanding these task-specific and developmental 
changes in brain-behavior relationships could have important implica
tions for identifying and supporting individuals with mathematical 
learning difficulties.

4.7. Role of MTL and AG memory circuits in mathematical cognition

Our findings advance understanding of the role of the MTL in 
mathematical processing in several ways. First, they provide causal 
evidence for the involvement of the MTL across a range of numerical 
tasks, from basic number comparisons to more complex arithmetic op
erations, supporting its proposed role as a general hub in mathematical 
cognition. Second, the presence of the MTL as a hub in AYA across all 
tasks, but not in children, suggests its role becomes more generalized 
with development. Third, the developmental pattern of enhanced bidi
rectional interactions in children, coupled with the emergence of net 
outflow in the MTL in AYA, suggests a significant directional refinement 
of MTL function with development. The transition from heightened 
bidirectional interactions in childhood to more focused, unidirectional 
outflow in AYA suggests a developmental shift towards more efficient 
information processing in this region. This could reflect the maturation 
of the MTL as a stable, task-independent hub for mathematical pro
cessing may occur later in development, through enhanced directed 
connectivity with task-relevant regions.

Our results also advance our understanding of the role of the AG in 
arithmetic processing in several ways. First, they provide causal evi
dence for the involvement of the AG specifically in arithmetic, sup
porting its proposed role in fact retrieval. The absence of the AG as a hub 
in number comparison tasks suggests that its role may be limited to more 
complex mathematical operations that rely on semantic memory or 
procedural knowledge. Second, they reveal that the net influence of the 
AG during arithmetic remains stable across development, which sug
gests its task-specificity may be established early in development. Third, 
the reduction in bidirectional interactions from childhood to adoles
cence suggests a refinement of AG function across development, 
potentially reflecting increased efficiency in interaction with task- 
relevant regions.

Our findings also have implications for understanding the differen
tial roles of the MTL and AG in mathematical cognition. While both 
regions showed higher bidirectional interactions in children, the AG 
maintained its hub status across development in arithmetic tasks, unlike 
the MTL. This suggests that the AG may play a more stable, task-specific 
role in arithmetic processing, while the MTL’s function appears to un
dergo more substantial developmental changes across various numerical 
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tasks. These findings converge with reports from training studies that 
point toward a central role of the hippocampus and other MTL structures 
in the acquisition and consolidation of a broad range of mathematical 
knowledge, and not just arithmetic facts (Bloechle et al., 2016; Kutter 
et al., 2018, 2022; Üstün et al., 2021).

4.8. Implications for understanding the role of memory systems in 
mathematical cognition

Our findings further highlight the crucial role of memory systems in 
mathematical cognition, particularly emphasizing the dynamic 
involvement of the MTL in development. The MTL, traditionally asso
ciated with declarative memory, emerged as a key player in numerical 
processing across various tasks in adolescence and young adulthood, 
suggesting that memory processes are integral to mathematical cogni
tion even in tasks that may not rely on fact retrieval. The maturation of 
the MTL to a more refined, unidirectional signaling hub in adolescence 
and adulthood suggests that increased efficiency of the MTL memory 
system may support mathematical processing later in development.

These findings provide new insights into how different memory 
systems contribute to mathematical cognition. Rather than viewing 
mathematical processing as solely dependent on abstract symbol 
manipulation, our results reveal the dynamic involvement of multiple 
memory systems. The MTL’s engagement across both basic numerical 
and complex arithmetic tasks suggests that its memory-related compu
tations may support multiple aspects of mathematical processing, from 
forming symbol-quantity associations to storing and retrieving arith
metic facts. The AG’s specific involvement during arithmetic, but not 
comparison tasks, indicates a more specialized role, potentially in se
mantic retrieval processes that support arithmetic fact recall.

The developmental changes observed in both the MTL and AG imply 
that maturation of multiple memory systems contribute to the devel
opment of mathematical skills. This has important implications for 
educational approaches, suggesting that strategies targeting the 
enhancement of these memory systems could be beneficial for 
improving mathematical abilities. Moreover, the distinct developmental 
trajectories of the MTL and AG suggest that different aspects of memory 
might be targeted at different developmental stages to optimize math
ematical learning.

4.9. Developmental changes in network dynamics may reflect excitatory/ 
inhibitory balance maturation

Finally, we consider potential neurophysiological bases of our find
ings. The pattern of heightened bidirectional interactions observed in 
children likely reflects developmental changes in excitatory/inhibitory 
(E/I) balance over the course of brain maturation. While we do not have 
direct evidence for E/I developmental changes in this numerical 
cognition domain, substantial evidence from developmental neurosci
ence indicates that E/I balance undergoes significant maturation from 
childhood to adulthood (Saberi et al., 2025; Zhang et al., 2024; Zhang 
et al., 2011). During early development, excitatory connections are 
more prevalent and are gradually refined through inhibitory circuit 
maturation and synaptic pruning (Caballero et al., 2021; Chechik et al., 
1999). This developmental trajectory is consistent with our observation 
of heightened bidirectional interactions in children that become more 
focused and efficient in adults.

Supporting this interpretation, previous research has shown that 
children with mathematical learning disabilities exhibit hyperactivity 
and hyperconnectivity compared to matched controls (Jolles et al., 
2016; Rosenberg-Lee et al., 2015), suggesting that disrupted E/I ratios 
may be associated with less efficient cognitive processing. Our finding 
that children with stronger bidirectional interactions show better cor
relations with mathematical abilities may indicate that some degree of 
elevated E/I activity during development is beneficial for mathematical 
skill acquisition. However, the maturation toward more balanced and 

selective signaling appears necessary for optimal adult-level 
performance.

This developmental perspective suggests that the transition from 
diffuse, bidirectional signaling in childhood to more focused, hub-like 
organization in adulthood reflects fundamental maturation of cortical 
circuits supporting mathematical cognition. Understanding these E/I 
developmental changes may provide insights into both typical mathe
matical development and potential targets for intervention in mathe
matical learning difficulties.

5. Conclusion

Our study provides novel insights into the development of brain 
networks involved in mathematical processing, revealing dynamic 
changes in causal interactions and signaling hubs from childhood to 
adulthood. We found that the MTL in the left hemisphere undergoes a 
significant developmental shift, transitioning from hyper-signaling and 
context-dependent causal interactions in childhood to serving as a stable 
causal signaling hub in numerical processing in adolescence and young 
adulthood. In contrast, the left AG maintained consistent hub-like 
properties across development specifically during arithmetic process
ing. These patterns of findings highlight distinct developmental trajec
tories for different memory systems supporting mathematical cognition. 
Our findings reveal that the network dynamics of the MTL may undergo 
a global developmental shift, reflecting the maturation of declarative 
memory systems that support efficient mathematical processing across 
multiple domains, from basic number processing to complex arithmetic.

By elucidating the causal dynamics of memory circuits within the 
math brain network and how they change with development, our study 
contributes to the growing body of knowledge on the neuro
developmental basis of mathematical cognition. These insights open 
new avenues for research into the intersection of memory and mathe
matical cognition, potentially leading to more effective, developmen
tally appropriate strategies for mathematics education and interventions 
for mathematical learning difficulties.
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